POTENTIAL ANTIDEPRESSANTS: 2-(METHOXY- AND HYDROXY--PHENYLTHIO)BENZYLAMINES AS SELECTIVE INHIBITORS OF 5-HYDROXYTRYPTAMINE RE-UPTAKE IN THE BRAIN

Jiří Jílek, Karel Šindelář, Josef Pomykáček, Vojtěch Kmoníček, Zdeněk Šedivý, Marta Hrubantová, Jiří Holubek, Emil Svátek, Miroslav Ryska, Ivan Koruna, Martin Valchář, Antonín Dlabač, Jiřina Metyšová, Nataša Dlohožková and Miroslav Protiva
Research Institute for Pharmacy and Biochemistry, 13060 Prague 3

Accepted March 20, 1989

Abstract

2-, 3- and 4-Methoxythiophenol, and 2,4-, 2,5- and 3,4-dimethoxythiophenol were transformed in two steps to the corresponding 2-(methoxyphenylthio)benzoyl chlorides XIII which were reacted with ammonia, methylamine, dimethylamine, diethylamine, dipropylamine, and di(2--propyl)amine to give the amides $X I V-X I X$. These were reduced mostly with lithium aluminium hydride to the amines $I I-V I I$. These methoxylated amines were demethylated mostly either by heating with pyridine hydrochloride or by treatment with boron tribromide. Some of the 2 --(methoxy- and hydroxy-phenylthio)benzylamines prepared, especially compounds $I I, I I I, X X I$, and $X X I I$, indicated properties of potential antidepressants being highly active and selective inhibitors of 5 -hydroxytryptamine re-uptake in the brain structures and having the typical antireserpine activity. The most interesting compound of the series is XXIb (hydrogen maleate VUFB-15 468) which is undergoing preclinical studies. On the basis of its structure, some further compounds ($X X V I I-X X I X, X X X I X-X L I$) were prepared by various methods.

In a recent communication ${ }^{1}$ we have described the synthesis and some properties of compound I which appeared (in the form of maleate) to be a promising potential antidepressant: it is active in two antireserpine tests, potentiates the toxicity of yohimbine, has high affinity to imipramine as well as desipramine binding sites in the rat brain, and inhibits strongly the re-uptake of 5 -hydroxytryptamine as well as of noradrenaline in the rat brain structures. We considered worthwile to use the structure I as that of a prototype and to start on its basis a broader reseach program in this line with the hope to find within ist structural analogues compounds with even more favourable properties.

1

The first type of analogues selected were derivatives of I methoxylated or hydroxylated in the phenylthio residue, i.e. IIa-IIf and XXIa-XXIf as well as their lower and higher homologues IIIa-VIIc and XXIIa-XXVIc. Their syntheses started from the coresponding methoxythiophenols which were available by described methods: 2-methoxythiophenol ${ }^{2}$, 3-methoxythiophenol ${ }^{3}$, 4-methoxythiophenol ${ }^{4}$, 2,4--dimethoxythiophenol ${ }^{5,6}, 2,5$-dimethoxythiophenol ${ }^{7}$, and 3,4-dimethoxythiophenol ${ }^{8}$. These thiophenols were reacted with 2 -iodobenzoic acid in a boiling solution of potassium hydroxide in the presence of copper (method A) (for the method, cf. ref. ${ }^{9}$). Out of the acids obtained, most are known and three of them were prepared by the same method: XIa (refs ${ }^{10,11}$), XIb (ref. ${ }^{12}$), XIc (ref. ${ }^{13}$), XIf (ref. ${ }^{14}$) (different method). The acid XIb has now also been obtained by reaction of thiosalicylic acid with 3-bromoanisole in boiling dimethylformamide in the presence of potassium carbonate and copper. The aldehydes XIIb, XIId, and XIIe, also useful as intermediates, were prepared by reactions of 2-chlorobenzaldehyde with the corresponding thiophenols in dimethylformamide in the presence of sodium carbonate or potassium carbonate at $90-120^{\circ} \mathrm{C}$. The produts were characterized by spectra and XIIe also by the crystalline semicarbazone. Compounds described in this paper, which were obtained by general methods, are assembled in Table I with the usual experimental data. Their spectral data are assembled in Table II. The Experimental describes only examples of the individual general methods and experiments in which the general methods were not used.

The acids XIa-XIf were transformed to the acid chlorides XIIIa-XIIIf by treatment with thionyl chloride in boiling benzene in the presence of a small quantity of dimethylformamide (method B). All of them are relatively stable crystalline substances which could be characterized by spectra. Only XIIIc was described as a characterized compound ${ }^{15}$; the preparation of XIIIa was described ${ }^{10,11}$ but the product was mentioned only as an oil. Treatment of the benzene solutions of XIIIa to XIIIf with $20-25 \%$ aqueous solutions of ammonia, methylamine or dimethylamine under vigorous stirring (method $C-1$) resulted in the amides XIVa-XIVf, XVa-XVf, and XVIa-XVIf. Only the amides XIVa and XVIa were prepared formerly ${ }^{10}$ by a similar method. The dimethylamide $X V I b$ was also prepared by further modified procedures: (i) by saturation of a benzene solution of $X I I I b$ with gaseous dimethylamine and (ii) by treatment of an aqueous solution of dimethylamine hydrochloride with aqueous sodium hydroxide and by stirring the mixture with a toluene solution of XIIIb. All the amides, methylamides, and dimethylamides were crystalline and were characterized by spectra. Reactions of XIIIa-XIIIc with diethylamine, dipropylamine, and di(2-propyl)amine in benzene solutions (method C-2) gave the amides XVIIa-XIXc. Only XVIIa, XIX a, and $X I X b$ were crystalline and could be fully characterized. The other (XVIIb, XVIIc, XVIIIa-XVIIIc, and XIXc) were oily and were further processed without characterization. In one case (attempt to prepare XVII b by method $C-2$), when the used XIIIb was allowed to stand at

Table I
2-(Methoxy- and hydroxy-phenylthio)benzylamines and intermediates

$\begin{aligned} & \circ \\ & \frac{0}{\bar{a}} \end{aligned}$	XIIIC	$\begin{aligned} & B \\ & (91) \end{aligned}$	$\begin{array}{r} 101-102 \\ \text { (cyclohexane) } \end{array}$	$\underset{(308 \cdot 8)}{\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}}$	$\begin{aligned} & 58 \cdot 34 \\ & 58 \cdot 34 \end{aligned}$	$\begin{aligned} & 4 \cdot 24 \\ & 4 \cdot 29 \end{aligned}$	$\begin{aligned} & 11 \cdot 48 \\ & 11 \cdot 18 \end{aligned}$	$\begin{aligned} & -- \\ & - \end{aligned}$	$\begin{aligned} & 10.39 \\ & 10.33 \end{aligned}$
	XIIIf	$\begin{aligned} & B \\ & (82) \end{aligned}$	133-134 (benzene-cyclohexane)	$\underset{(308 \cdot 8)}{\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClO}_{3} \mathrm{~S}}$	$\begin{aligned} & 58 \cdot 34 \\ & 58 \cdot 70 \end{aligned}$	$\begin{aligned} & 4 \cdot 24 \\ & 4 \cdot 33 \end{aligned}$	$\begin{aligned} & 11.48 \\ & 11.55 \end{aligned}$	$-$	$\begin{aligned} & 10.39 \\ & 10.36 \end{aligned}$
$\begin{aligned} & \text { OT } \\ & \\ & \hline 1 \end{aligned}$	XIVa	$\begin{aligned} & C-I \\ & (95) \end{aligned}$	$\begin{array}{r} 131^{i} \\ \text { (ethanol) } \end{array}$						
O 3 3 5	XXIVb	$\begin{aligned} & C-I \\ & (94) \end{aligned}$	$\begin{aligned} & 120 \cdot 5 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(259 \cdot 3)}{\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}}$	$\begin{aligned} & 64 \cdot 85 \\ & 65 \cdot 05 \end{aligned}$	$\begin{aligned} & 5 \cdot 05 \\ & 5 \cdot 09 \end{aligned}$	--	$\begin{aligned} & 5 \cdot 40 \\ & 5 \cdot 42 \end{aligned}$	$\begin{aligned} & 12 \cdot 36 \\ & 12.24 \end{aligned}$
$\begin{aligned} & \underset{2}{2} \\ & \underset{y}{2} \end{aligned}$	XIVc	$\begin{aligned} & C-1 \\ & (98) \end{aligned}$	$\begin{gathered} 178 \\ \text { (ethanol) } \end{gathered}$	$\underset{(259 \cdot 3)}{\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{~S}}$	$\begin{aligned} & 64 \cdot 85 \\ & 65 \cdot 11 \end{aligned}$	$\begin{aligned} & 5.05 \\ & 5.07 \end{aligned}$	-	$\begin{aligned} & 5 \cdot 40 \\ & 5 \cdot 32 \end{aligned}$	$\begin{aligned} & 12 \cdot 36 \\ & 12 \cdot 60 \end{aligned}$
	XIVd	$\begin{aligned} & C-1 \\ & (89) \end{aligned}$	$\begin{aligned} & 164 \cdot 5-165 \cdot 5 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(289 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}}$	$\begin{aligned} & 62 \cdot 26 \\ & 62 \cdot 06 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 29 \end{aligned}$	--	$\begin{aligned} & 4 \cdot 84 \\ & 4 \cdot 92 \end{aligned}$	$\begin{aligned} & 11 \cdot 08 \\ & 11.34 \end{aligned}$
	XIVe	$\begin{aligned} & C-1 \\ & (94) \end{aligned}$	$\begin{aligned} & \quad 151-152 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(289 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}}$	$\begin{aligned} & 62 \cdot 26 \\ & 62 \cdot 18 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 21 \end{aligned}$	-	$\begin{aligned} & 4 \cdot 84 \\ & 4 \cdot 76 \end{aligned}$	$\begin{aligned} & 11 \cdot 08 \\ & 11 \cdot 19 \end{aligned}$
	XVIf	$\begin{aligned} & C-1 \\ & (98) \end{aligned}$	$\begin{gathered} 179 \\ \text { (ethanol) } \end{gathered}$	$\underset{(289 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{3} \mathrm{~S}}$	$\begin{aligned} & 62 \cdot 26 \\ & 62 \cdot 52 \end{aligned}$	$\begin{aligned} & 5 \cdot 23 \\ & 5 \cdot 33 \end{aligned}$	-	$\begin{aligned} & 4 \cdot 84 \\ & 4 \cdot 77 \end{aligned}$	$\begin{aligned} & 11.08 \\ & 11.39 \end{aligned}$
	$X V a$	$\begin{aligned} & C-I \\ & (90) \end{aligned}$	$\begin{aligned} & 109-110 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(273 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}}$	$\begin{aligned} & 65 \cdot 91 \\ & 65 \cdot 74 \end{aligned}$	$\begin{aligned} & 5 \cdot 53 \\ & 5 \cdot 68 \end{aligned}$	$-$	$\begin{aligned} & 5 \cdot 12 \\ & 4 \cdot 98 \end{aligned}$	$\begin{aligned} & 11 \cdot 73 \\ & 11 \cdot 91 \end{aligned}$
	$X V b$	$\begin{aligned} & C-1 \\ & (87) \end{aligned}$	$\begin{aligned} & 92 \\ & \text { (aqueous ethanol) } \end{aligned}$	$\begin{gathered} \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S} \\ (273 \cdot 3) \end{gathered}$	$\begin{aligned} & 65 \cdot 91 \\ & 65.99 \end{aligned}$	$\begin{aligned} & 5 \cdot 53 \\ & 5 \cdot 41 \end{aligned}$	-	$\begin{aligned} & 5 \cdot 12 \\ & 5 \cdot 12 \end{aligned}$	$\begin{aligned} & 11.73 \\ & 11.90 \end{aligned}$
	$X V C$	$\begin{aligned} & C-I \\ & (93) \end{aligned}$	$\begin{aligned} & 140 \cdot 5-141 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(273 \cdot 3)}{\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}}$	$\begin{aligned} & 65 \cdot 91 \\ & 65 \cdot 98 \end{aligned}$	$\begin{aligned} & 5 \cdot 53 \\ & 5 \cdot 66 \end{aligned}$	-	$\begin{aligned} & 5 \cdot 12 \\ & 5 \cdot 14 \end{aligned}$	$\begin{aligned} & 11.73 \\ & 11.83 \end{aligned}$
	XVd	$\begin{aligned} & C-1 \\ & (93) \end{aligned}$	$\begin{aligned} & \quad 151-152 \\ & \text { (benzene-light } \\ & \text { petroleum) } \end{aligned}$	$\underset{(303.4)}{\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}}$	$\begin{aligned} & 63 \cdot 34 \\ & 63 \cdot 33 \end{aligned}$	$\begin{aligned} & 5 \cdot 65 \\ & 5 \cdot 72 \end{aligned}$	-	$\begin{aligned} & 4 \cdot 62 \\ & 4 \cdot 58 \end{aligned}$	$\begin{aligned} & 10 \cdot 57 \\ & 10 \cdot 26 \end{aligned}$
	XVe	$\begin{aligned} & C-1 \\ & (99) \end{aligned}$	```82-83 (benzene-light petroleum)```	$\underset{(303 \cdot 4)}{\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}}$	$\begin{aligned} & 63 \cdot 34 \\ & 63 \cdot 41 \end{aligned}$	$\begin{aligned} & 5.65 \\ & 5.70 \end{aligned}$	$-$	$\begin{aligned} & 4 \cdot 62 \\ & 4 \cdot 38 \end{aligned}$	$\begin{aligned} & 10 \cdot 57 \\ & 10 \cdot 53 \end{aligned}$

Table I
(Continued)

Table I
(Continued)

Compound ${ }^{\text {a }}$	Method (yield, \%)	M.p., ${ }^{\circ} \mathrm{C}$ (solvent)	Formula (M.w.)	Calculated/Found				
				\% C	\% H	\% Hal	\% N	\% S
IIIa-HCl	$\begin{aligned} & D-1 \\ & (81) \end{aligned}$	$\begin{aligned} & 181-182 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(295 \cdot 8)}{\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNOS}}$	$\begin{aligned} & 60 \cdot 90 \\ & 61 \cdot 02 \end{aligned}$	$\begin{aligned} & 6 \cdot 12 \\ & 6 \cdot 24 \end{aligned}$	$\begin{aligned} & 11.99 \\ & 11.98 \end{aligned}$	$\begin{aligned} & 4 \cdot 73 \\ & 4 \cdot 71 \end{aligned}$	$\begin{aligned} & 10 \cdot 84 \\ & 10 \cdot 62 \end{aligned}$
IIIb- HCl	$\begin{aligned} & D-1 \\ & (88) \end{aligned}$	$\begin{gathered} 130 \\ \text { (ethanol-ether) } \end{gathered}$	$\underset{(295 \cdot 8)}{\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNOS}}$	$\begin{aligned} & 60 \cdot 90 \\ & 61 \cdot 07 \end{aligned}$	$\begin{aligned} & 6 \cdot 12 \\ & 6 \cdot 11 \end{aligned}$	$\begin{aligned} & 11 \cdot 99 \\ & 12 \cdot 16 \end{aligned}$	$\begin{aligned} & 4 \cdot 73 \\ & 4 \cdot 91 \end{aligned}$	$\begin{aligned} & 10.84 \\ & 10.84 \end{aligned}$
IIIC- HCl	$\begin{aligned} & D-I \\ & (92) \end{aligned}$	$\begin{gathered} 133-134 \\ \text { (ethanol-ether) } \end{gathered}$	$\underset{(295 \cdot 8)}{\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNOS}}$	$\begin{aligned} & 60 \cdot 90 \\ & 60 \cdot 72 \end{aligned}$	$\begin{aligned} & 6 \cdot 12 \\ & 6 \cdot 16 \end{aligned}$	$\begin{aligned} & 11.99 \\ & 12.09 \end{aligned}$	$\begin{aligned} & 4.73 \\ & 4.75 \end{aligned}$	$\begin{aligned} & 10 \cdot 84 \\ & 11 \cdot 00 \end{aligned}$
IIId	$\begin{aligned} & D-1 \\ & (88) \end{aligned}$	$46-47$ (benzene-hexane)	$\begin{gathered} \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S} \\ (289 \cdot 4) \end{gathered}$	$\begin{aligned} & 66 \cdot 40 \\ & 66 \cdot 69 \end{aligned}$	$\begin{aligned} & 6.62 \\ & 6.53 \end{aligned}$	-	$\begin{aligned} & 4 \cdot 84 \\ & 4 \cdot 76 \end{aligned}$	$\begin{aligned} & 11.08 \\ & 10.87 \end{aligned}$
IIId-HM		$\begin{aligned} & \quad 137-138 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(405 \cdot 5)}{\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}}$	$\begin{aligned} & 59 \cdot 24 \\ & 58 \cdot 80 \end{aligned}$	$\begin{aligned} & 5.72 \\ & 5.83 \end{aligned}$	-	$\begin{aligned} & 3.45 \\ & 3.54 \end{aligned}$	$\begin{aligned} & 7.91 \\ & 8 \cdot 18 \end{aligned}$
IIIe-HM	$\begin{aligned} & D-1 \\ & (95) \end{aligned}$	$\begin{aligned} & \quad 119-121 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(405 \cdot 5)}{\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}}$	$\begin{aligned} & 59 \cdot 24 \\ & 59 \cdot 17 \end{aligned}$	$\begin{aligned} & 5 \cdot \because 2 \\ & 5 \cdot 87 \end{aligned}$	-	$\begin{aligned} & 3.45 \\ & 3.42 \end{aligned}$	$\begin{aligned} & 7.91 \\ & 7.73 \end{aligned}$
IIIf-HM	$\begin{aligned} & D-2 \\ & (82) \end{aligned}$	$\begin{aligned} & 151-152 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(405 \cdot 4)}{\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}}$	$\begin{aligned} & 59 \cdot 24 \\ & 59 \cdot 44 \end{aligned}$	$\begin{aligned} & 5 \cdot 72 \\ & 5 \cdot 88 \end{aligned}$	-	$\begin{aligned} & 3 \cdot 45 \\ & 3 \cdot 51 \end{aligned}$	$\begin{aligned} & 7.91 \\ & 8.06 \end{aligned}$
IVa	$\begin{aligned} & D-1 \\ & (77) \end{aligned}$	$\begin{gathered} 50--51 \\ \text { (cyclohexane) } \end{gathered}$	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NOS} \\ (245 \cdot 3) \end{gathered}$	$\begin{aligned} & 68 \cdot 54 \\ & 68.41 \end{aligned}$	$\begin{aligned} & 6 \cdot 16 \\ & 6 \cdot 22 \end{aligned}$	-	$\begin{aligned} & 5.71 \\ & 5.74 \end{aligned}$	$\begin{aligned} & 13 \cdot 07 \\ & 13 \cdot 18 \end{aligned}$
$1 \mathrm{Va}-\mathrm{HCl}$		$\begin{aligned} & 213-214 \\ & \text { (ethanol) } \end{aligned}$	$\begin{gathered} \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNOS} \\ (281 \cdot 8) \end{gathered}$	$\begin{aligned} & 59 \cdot 67 \\ & 60 \cdot 07 \end{aligned}$	$\begin{aligned} & 5 \cdot 72 \\ & 5 \cdot 79 \end{aligned}$	$\begin{aligned} & 12.58 \\ & 12.82 \end{aligned}$	$\begin{aligned} & 4 \cdot 97 \\ & 4 \cdot 99 \end{aligned}$	$\begin{aligned} & 11 \cdot 38 \\ & 11 \cdot 46 \end{aligned}$
$I V b-\mathrm{HCl}$	$\begin{gathered} D-1 \\ (70) \end{gathered}$	$\begin{array}{r} 161-162 \\ \text { (ethyl acetate) } \end{array}$	$\underset{(281 \cdot 8)}{\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{ClNOS}}$	$\begin{aligned} & 59 \cdot 67 \\ & 59 \cdot 47 \end{aligned}$	$\begin{aligned} & 5 \cdot 72 \\ & 5 \cdot 79 \end{aligned}$	$\begin{aligned} & 12 \cdot 58 \\ & 12 \cdot 48 \end{aligned}$	$\begin{aligned} & 4 \cdot 97 \\ & 4 \cdot 99 \end{aligned}$	$\begin{aligned} & 11 \cdot 38 \\ & 11 \cdot 32 \end{aligned}$
IVC-HCl	$\begin{aligned} & D-1 \\ & (73) \end{aligned}$	$\begin{aligned} & \quad 182-182 \cdot 5 \\ & \text { (ethanol) } \end{aligned}$	$\underset{(281 \cdot 8)}{\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{CINOS}}$	$\begin{aligned} & 59 \cdot 67 \\ & 59 \cdot 76 \end{aligned}$	$\begin{aligned} & 5 \cdot 72 \\ & 5 \cdot 72 \end{aligned}$	$\begin{aligned} & 12.58 \\ & 12.74 \end{aligned}$	$\begin{aligned} & 4 \cdot 97 \\ & 4 \cdot 87 \end{aligned}$	$\begin{aligned} & 11 \cdot 38 \\ & 11 \cdot 30 \end{aligned}$

Table 1
(Continued)

Compound	Method (yield, \%)	M.p., ${ }^{\circ} \mathrm{C}$ (solvent)	Formula(M.w.)	Calculated/Found				
				\% C	\% H	\% Hal	\% N	$\% \mathrm{~S}$
$V I I b$	D-3	b.p. $172-175^{\circ} \mathrm{C} /$	$\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NOS}$	$72 \cdot 90$	8.26	-	$4 \cdot 25$	$9 \cdot 73$
	(70)	10.13 kPa	(329.5)	$72 \cdot 79$	8.29	-	$4 \cdot 19$	$9 \cdot 70$
VIIC -HCl	D-3	148-150	$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{CINOS}$	$65 \cdot 64$	7.71	$9 \cdot 69$	$3 \cdot 83$	8.76
	(81)	(acetone-ether)	$(366 \cdot 0)$	$65 \cdot 42$	7.71	$9 \cdot 97$	$3 \cdot 63$	8.76
$X X I a$	E	$83 \cdot 5$	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NOS}$	69.46	$6 \cdot 61$	-	$5 \cdot 40$	12.36
	(78)	(ethanol)	$(259 \cdot 4)$	$69 \cdot 16$	$6 \cdot 76$	-	$5 \cdot 28$	12.47
$X X I a-\mathrm{HM}$		107-108	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$	$60 \cdot 78$	5.64	-	$3 \cdot 73$	8.54
		(ethanol-ether)	($375 \cdot 4$)	$60 \cdot 61$	5.63	-	$3 \cdot 51$	$8 \cdot 80$
XXIb	E^{e}	106-107	$\mathrm{C}_{15} \mathrm{H}_{17}$ NOS	$69 \cdot 46$	6.61	-	$5 \cdot 40$	12.36
	(84)	(cyclohexane)	(259.4)	$69 \cdot 19$	$6 \cdot 76$	-	5.28	$12 \cdot 11$
$X X I b-\mathrm{HM}$		123-124	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$	$60 \cdot 78$	5.64	-	3.73	8.54
		(ethanol-ether)	(375.4)	$61 \cdot 12$	5.82	-	$3 \cdot 79$	8.46
$X X I b-\mathrm{HBr}$	F^{e}	150-151	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNOS}$	52.94	$5 \cdot 33$	23.49	$4 \cdot 12$	$9 \cdot 42$
	(75)	(ethanol-ether)	(340.3)	52.96	$5 \cdot 29$	$23 \cdot 38$	$4 \cdot 14$	$9 \cdot 47$
$X X I b-\mathrm{HCl}$		165-166	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{ClNOS}$	$60 \cdot 90$	$6 \cdot 13$	11.99	$4 \cdot 73$	$10 \cdot 84$
		(ethanol)	(295.8)	60.97	6.07	$12 \cdot 16$	$4 \cdot 80$	10.97
XXIC	E	119-121	$\mathrm{C}_{15} \mathrm{H}_{17}{ }^{\text {NOS }}$	69.46	6.61	-	$5 \cdot 40$	$12 \cdot 36$
	(83)	(cyclohexane)	(259.4)	69.21	$6 \cdot 78$	-	$5 \cdot 15$	12.45
XXIc-HM		153-154	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{5} \mathrm{~S}$	$60 \cdot 78$	$5 \cdot 64$	-	3.73	$8 \cdot 54$
		(ethanol)	(375.4)	$60 \cdot 72$	5.71	-	3.79	$8 \cdot 68$

Table 1
(Continued)

Table I
(Continued)

room temperature for a longer time (several weeks), a nitrogen-free product was obtained which was identified as $X X X I I$. The chloride XIIIb evidently underwent during storing the spontaneous cyclization. Compound $X X X I I$ was mentioned only in one patent ${ }^{16}$.

$$
\begin{aligned}
& \text { 11, } \mathrm{R}^{i}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \\
& X I, R^{1}=\mathrm{COOH} \\
& \text { III, } \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NHCH}_{3} \\
& \text { XII, } \mathrm{R}^{\prime}=\mathrm{CHO} \\
& \text { N. } \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{NH}_{2} \\
& \text { XIII, } \mathrm{R}^{\prime}=\mathrm{COCl} \\
& V, R^{1}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \\
& X N, R^{\prime}=\mathrm{CONH}_{2} \\
& \text { VI, } R^{\prime}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \\
& X V, R^{i}=\mathrm{CONHCH}_{3} \\
& \text { VII, } \mathrm{R}^{\circ}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2} \\
& X V I, R^{\prime}=\operatorname{CON}\left(\mathrm{CH}_{3}\right)_{2} \\
& \text { V'II, } R=\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2} \quad X V I I, R^{\prime}=\operatorname{CON}\left(\mathrm{C}, \mathrm{H}_{5}\right)_{2} \\
& X \text { VIII, } \mathrm{R}^{\mathrm{i}}=\mathrm{CON}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \\
& I X, \mathrm{R}^{i}=\mathrm{CH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \quad X I X, \mathrm{R}^{i}=\mathrm{CON}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{\text {: }} \text { : } \\
& x, \mathrm{R}=\mathrm{CH}_{2} \underset{\stackrel{N}{\mathrm{~N}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}}{ } \\
& X X, \mathrm{R}^{\prime}=\mathrm{CONH}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}
\end{aligned}
$$

In formulae $\|-X X: a, \mathrm{R}=2-\mathrm{OCH}_{3} \quad b, \mathrm{R}=3-\mathrm{OCH}_{3} \quad c, \mathrm{R}=4-\mathrm{OCH}_{3}$ $d, \mathrm{R}=2,4-\left(\mathrm{OCH}_{3}\right)_{2} \quad$ e, $\mathrm{R}=2,5-\left(\mathrm{OCH}_{3}\right)_{2} \quad f, \mathrm{R}=3,4-(\mathrm{OCH})_{2}$

The amides just mentioned were reduced with lithium aluminium hydride either in ether (method $D-1$), or - due to poor solubility - in tetrahydrofuran (method $D-2$) or in a mixture of ether and benzene (method $D-3$). Only a part of the amines $I I-V I I$ obtained is crystalline; most of them are oily. All bases were transformed

$$
\begin{aligned}
& X X I, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \\
& X X I I, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{NHCH}_{3} \\
& X X I I_{1}, \mathrm{R}=\mathrm{CH}_{2} \mathrm{NH}_{2} \\
& \text { XXIV, } \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \\
& X X V, \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2} \\
& X X V I, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)_{2} \\
& \text { XXVII, } \mathrm{R}^{\prime}=\underset{\underset{\mathrm{C}}{\mathrm{C}} \mathrm{CH}_{3}}{\mathrm{CHN}\left(\mathrm{CH}_{3}\right)_{2}} \\
& X X V I I I, \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}^{\left(\mathrm{CH}_{3}\right)_{2}} \\
& \text { XXIX, } \mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2} \\
& X X X, \mathrm{R}^{\prime}=\mathrm{COOH} \\
& X X X I, \mathrm{R}^{\prime}=\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2} \\
& \text { In formulae } X X I-X X X I \quad a, \mathrm{R}=2-\mathrm{OH} \quad b, \mathrm{R}=3-\mathrm{OH} \quad c, \mathrm{R}=4-\mathrm{OH} \\
& d, R=2,4-(\mathrm{OH})_{2} \quad \text { e, } \mathrm{R}=2,5-(\mathrm{OH})_{2} \quad f, \mathrm{R}=3,4-(\mathrm{OH})_{2}
\end{aligned}
$$

Table II
Spectra of 2-(methoxy- and hydroxy-phenylthio)benzylamines and intermediates

Compound	Spectrum	Data
XId	UV	223 (4.43), infl. 237 (4.22), 255.5 (4.05), 281 (3.83), infl. 289 (3.81), 320 (3.69)
	IR	745, 800, 830, 869 (4 and 2 adjacent and solitary Ar-H); 935, 1210, $1250,1660,2560,2645$, infl. $3100(\mathrm{ArCOOH}) ; 1030,1210,1250\left(\mathrm{ArOCH}_{3}\right) ; 1483,1555,1571,1600(\mathrm{Ar})$
	${ }^{1} \mathrm{H} N \mathrm{NMR}{ }^{\text {a }}$	3.71 s and $3.81 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.50-6.80 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H} \cdot 6^{\prime}\right) ; 7.00-7.50 \mathrm{~m}, 3 \mathrm{H}$ (H-3, H-4, H-5); $7.90 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-6, J=8.5 ; 2.0$)
XIe	UV	255 (3.88), 315 (3.93)
	IR	748, 793, 885 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 906, $1259,1270,1300,1674,2515,2570,2650$, infl. $3100(\mathrm{ArCOOH}) ; 1040\left(\mathrm{ArOCH}_{3}\right) ; 1476,1487,1558,1587,1600,3000,3060$ (Ar)
	${ }^{1} \mathrm{H} N \mathrm{NRR}^{\boldsymbol{a}}$	$\begin{aligned} & 3.63 \mathrm{~s} \text { and } 3.68 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.60-7.50 \mathrm{~m}, 6 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) \\ & 7.90 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) \end{aligned}$
XIf	UV	247 (4.43), infl. 252 (4.02), infl. 285 (3.84), 320 (3.70)
	IR	750, 800, 880 (4 and 2 adjacent and solitary Ar-H); 934, 1232, 1269, 1670, $2555,2640,3120$ (ArCOOH) ; $1030,1251\left(\mathrm{ArOCH}_{3}\right) ; 1504,1556,1585$ (Ar)
	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$	$\begin{aligned} & 3.73 \mathrm{~s} \text { and } 3.81 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6 \cdot 70 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-3, J=9 \cdot 0 ; 2 \cdot 0) ; 7 \cdot 00-7.50 \mathrm{~m}, 5 \mathrm{H} \\ & \left(\mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7 \cdot 90 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-6, J=9 \cdot 0 ; 2 \cdot 0) \end{aligned}$
XIIIa	UV	255 (3.90), 281 (3.73), 288 (3.72), 321 (3.71)
	IR	696, 866 (C-Cl); 753, 770 (4 adjacent $\mathrm{Ar}-\mathrm{H}$); 1250 , $1275\left(\mathrm{ArOCH}_{3}\right) ; 1475,1554,1580,1589$, 3046, 3065,3093 (Ar); 1723, 1756 (ArCOCl)
XIIIb	UV	224 (4.41), 253 (3.99), 280 (3.79), 320 (3.74)
	IR	692, 725, 780, 790, 850, 860, 879 (4 and 3 adiacent and solitary Ar-H); 1031, 1 130, 1 187, 1250 (ArOCH_{3}); 1480, $1550,1588,3000,3060,3080(\mathrm{Ar})$; infl. 1725,1757 (ArCOCl)
	${ }^{1} \mathrm{H}$ NMR	$3.79 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.70-7.50 \mathrm{~m}, 7 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 8.21 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$
XIIId	UV	infl. 255 (4.04), 281 (3.77), infl. 288 (3.74), 3.24 (3.72)
	IR	745, 830, 865 (4 and 2 adjacent and solitary Ar-H); 1030, $1080,\left(1165,1215\left(\mathrm{ArOCH}_{3}\right) ; 1488,1555\right.$, $1575,1598,3010,3060(\mathrm{Ar}) ; 1720,1760(\mathrm{ArCOCl})$

\begin{tabular}{|c|c|c|}
\hline XIIIf \& \[
\begin{aligned}
\& \text { UV } \\
\& \text { IR }
\end{aligned}
\] \& \begin{tabular}{l}
\(224(4 \cdot 42)\), infl. 257 (4.03), infl. 280 (3.82), 322 (3.73) \\
694, \(855(\mathrm{C}-\mathrm{Cl}) ; 765,775,800,873(4\) and 2 adjacent and solitary \(\mathrm{Ar}-\mathrm{H}) ; 1231,1256\left(\mathrm{ArOCH}_{3}\right)\);
\[
1500,1550,1583,3000,3072(\mathrm{Ar}), 1759(\mathrm{ArCOCl})
\]
\end{tabular} \\
\hline XIVa \& \({ }^{1} \mathrm{H}\) NMR \& \(3.70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.60 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 6.70-7.40 \mathrm{~m}, 7 \mathrm{H}\) (ArH with the exception of \(\mathrm{H}-6\)); \(7.65 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)\) \\
\hline \(X I V b\) \& UV
IR
\({ }^{1} \mathrm{H} \mathrm{NMR}^{a}\) \& \begin{tabular}{l}
\[
252(3 \cdot 99), 283(3 \cdot 83)
\] \\
739, 750, 779, 891 (4 and 3 adjacent and solitary \(\mathrm{Ar}-\mathrm{H}\)); 1043, \(1232,1286\left(\mathrm{ArOCH}_{3}\right) ; 1560,1578\),
\[
1590,3055(\mathrm{Ar}), 1625\left(\mathrm{ArCONH}_{2}\right) ; 3180,3408,3420\left(\mathrm{NH}_{2}\right)
\] \\
\(3.70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.80-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH}) ; 7.50 \mathrm{bs}\) and \(7.90 \mathrm{bs} 1+1 \mathrm{H}\left(\mathrm{CONH}_{2}\right)\)
\end{tabular} \\
\hline XIVc \& UV
IR \& \[
\left.\begin{array}{l}
226(4 \cdot 31), 252 \cdot 5(4 \cdot 10) \text {, infl. } 302(3 \cdot 55) \\
744,829(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1025,1250\left(\mathrm{ArOCH}_{3}\right) ; 1490,1590(\mathrm{Ar}) ; 1611,3175,3405\left(\mathrm{NH}_{2}\right) ; \\
1641(\mathrm{ArCONH}
\end{array}\right) \text {; }
\] \\
\hline XIVd \& UV
IR

${ }^{1} \mathrm{H}^{\text {NMR }}{ }^{\text {a }}$ \& | 281 (3.84), 287 (3.84) |
| :--- |
| 744, 826, 865 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1025, 1205, 1305, $2855\left(\mathrm{ArOCH}_{3}\right) ; 1490$, $1563,1573,1590(\mathrm{Ar}) ; 1640\left(\mathrm{ArCONH}_{2}\right) ; 3180,3390\left(\mathrm{NH}_{2}\right)$ |
| 3.70 s and $3.80 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right), 6.50-6.80 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.00-7.60 \mathrm{~m}, 4 \mathrm{H}$ (remaining ArH); $7.85 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right)$ |

\hline XIVe \& UV
IR

${ }^{1} \mathrm{H}^{\text {NMR }}{ }^{\text {a }}$ \& | infl. 251 (3.84), $307 \cdot 5$ (3.88) |
| :--- |
| 732, 807, 874 (4 and 2 adjacent and solitary Ar-H); 1018, $1037,1220,1275\left(\mathrm{ArOCH}_{3}\right) ; 1488$, $1592,3000(\mathrm{Ar}) ; 1640,3350,3455\left(\mathrm{NH}_{2}\right) ; 1670\left(\mathrm{ArCONH}_{2}\right)$ |
| 3.62 s and $3.65 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.70-7.30 \mathrm{~m}, 6 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3^{\prime}, \mathrm{H}-4 \cdot \mathrm{H}-6^{\prime}\right)$; |
| $7.55 \mathrm{~m}, 1 \mathrm{H}$ (H-6); 7.40 bs and $7.88 \mathrm{bs}, 1+1 \mathrm{H}(\mathrm{CONHa})$ |

\hline XIVf \& UV
IR

${ }^{1} \mathrm{H}^{\text {NMR }}{ }^{\text {a }}$ \& | $250(4.07), \text { infl. } 280(3.93)$ |
| :--- |
| 743, 763, 820, 860 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1228,1249\left(\mathrm{ArOCH}_{3}\right) ; 1500,1560,1581$, 3040,3060 (Ar); $1606,1644,1670\left(\mathrm{ArCONH}_{2}\right) ; 3195,3220,3280,3330,3390\left(\mathrm{NH}_{2}\right)$ |
| 3.70 s and $3.78 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.70-7.35 \mathrm{~m}, 6 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.50 \mathrm{dd}, 1 \mathrm{H}$ (H-6, $J=8 \cdot 5 ; 2 \cdot 5$); $7 \cdot 40$ bs and $7 \cdot 90 \mathrm{bs}, 1+1 \mathrm{H}\left(\mathrm{CONH}_{2}\right)$ |

\hline
\end{tabular}

Table II
(Continued)

Compound	Spectrum	Data
$X V a$	UV	253 (3.98), 287 (3.83)
	IR	$\begin{aligned} & 749(4 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1255,1270,1319\left(\mathrm{ArOCH}_{3}\right) ; 1570,1630(\mathrm{ArCONHR}) ; 1580,3005,3080 \\ & (\mathrm{Ar}) ; 3270(\mathrm{NH}) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2.88 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, \mathrm{~J}=5.0\right) ; 3.72 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.60-7.40 \mathrm{~m}, 7 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right. \\ & \left.\mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.60 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) \end{aligned}$
$X V b$	UV	251 (3.99), 276 (3.81)
	IR	729, 759, 780, 899 (4 and 2 adjacent and solitary Ar-H); 1231, $1285\left(\mathrm{ArOCH}_{3}\right) ; 1545,1640$ (ArCONHR); $1564,1573,1$ 588, 3052 (Ar); 3190 (NH)
	${ }^{1} \mathrm{H}$ NMR	$2.90 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, J=5.0\right) ; 3.70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.50 \mathrm{bm}, 1 \mathrm{H}(\mathrm{CONH}) ; 6.65-7.30 \mathrm{~m}, 7 \mathrm{H}$ (H-3, H-4, H-5, H-2', H-4', H-5', H-6'); $7 \cdot 50 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$
$X V C$	UV	228 (4.27), 254 (4.09), infl. 275 (3.90), infl. 300 (3.56)
	IR	744, 833 (4 and 2 adjacent $\mathrm{Ar}-\mathrm{H}$); 1024, $1225,1284\left(\mathrm{ArOCH}_{3}\right) ; 1492,1550,1569,1589,3000$, 3075 (Ar); 1638 (ArCONHR); 3295 (NH)
	${ }^{1} \mathrm{H}$ NMR	$2.92 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, J=5.0\right) ; 3.78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.50 \mathrm{bm}, 1 \mathrm{H}(\mathrm{NH}) ; 6.70-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
XVd	UV	infl. 250 (4.11), 283 (3.87), 289 (3.87)
	IR	750, 840, 860 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1030,1210,1310\left(\mathrm{ArOCH}_{3}\right) ; 1490,1590,3000$, 3070 (Ar); 1531,1658 (ArCONHR); 3400 (NH)
	${ }^{1} \mathrm{H}$ NMR	$2.92 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, J=5.0\right) ; 3.68 \mathrm{~s} \text { and } 3.75 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.40 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ;$ $6.80-7 \cdot 60 \mathrm{~m}, 6 \mathrm{H}$ (remaining ArH and NH)
XVe	UV	infl. 251 (4.01), 307 (3.92)
	IR	$745,750,798,868,885$ (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1018, $1040,1220,2275\left(\mathrm{ArOCH}_{3}\right)$; $1492,1590,3060(\mathrm{Ar}) ; 1548,1630$ (ArCONHR); 3300 (NH)
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2 \cdot 95 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, \mathrm{~J}=5.0\right) ; 3.67 \mathrm{~s} \text { and } 3.69 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.84 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{H}^{\prime} 3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) \\ & 7 \cdot 10 \mathrm{bq}, 1 \mathrm{H}(\mathrm{NH}) ; 7.20 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H} \cdot 5) ; 7.65 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) \end{aligned}$

$X V f$	UV	infl. 249 (4.11), infl. 279 (3.93)
	IR	766, 805, 880 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1230, 1252, $1269\left(\mathrm{ArOCH}_{3}\right) ; 1501,1584,3000$. 3050,3080 (Ar); 1560, 1635 (ArCONHR); 3265 (NH)
	${ }^{1} \mathrm{H}$ NMR	$2.95 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}, J=5.0\right) ; 3.78 \mathrm{~s}$ and $3.85 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.60 \mathrm{bm}, 1 \mathrm{H}(\mathrm{NH}) ; 6.75-7.30 \mathrm{~m}$, $6 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7 \cdot 50 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$
XVIa	${ }^{1} \mathrm{H}$ NMR	2.82 s and $3.05 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.79 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.70-7.30 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$X V I b$	UV	251 (3.98), 282 (3.79)
	IR	$\begin{aligned} & 685,750,770,890(4 \text { and } 3 \text { adjacent and solitary } \mathrm{Ar}-\mathrm{H}) ; 1046,1227\left(\mathrm{ArOCH}_{3}\right) ; 1570,1588,3010, \\ & 3060(\mathrm{Ar}) ; 1625\left(\mathrm{ArCONR}_{2}\right) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR	2.80 s and $3.08 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.72 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.60-7.30 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$X V I_{C}$	UV	228 (4-24), 251 (4-12), infl. 275 (3.86)
	IR	755, 782, $81 \rho, 827$ (4 and 2 adjacent $\mathrm{Ar}-\mathrm{H}$); 1026, $1248\left(\mathrm{ArOCH}_{3}\right) ; 1491,1592,3000,3050$ (Ar); $1630\left(\mathrm{ArCONR}_{2}\right)$
XVId	UV	infl. 233 (4.23), infl. 250 (4.12), $293 \cdot 5$ (3.91), 288 (3.91)
	IR	780, 840, 880 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1030, $1080,1210,1305\left(\mathrm{ArOCH}_{3}\right) ; 1572,1580$, $1589,1598,3010,3030,3085(\mathrm{Ar}) ; 1631\left(\mathrm{ArCONR}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	2.90 s and $3.11 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.71 \mathrm{~s}$ and $3 \cdot 80 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.50 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ;$ $6.80-7.50 \mathrm{~m}, 5 \mathrm{H}$ (remaining ArH)
XVIe	UV	infl. 250 (4.02), 306 (3.86)
	IR	$750,790,800,850,865(4$ and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}) ; 1048,1215,1270\left(\mathrm{ArOCH}_{3}\right) ; 1480$, 1580,3000 (Ar); $1638\left(\mathrm{ArCONR}_{2}\right)$
	${ }^{1} \mathrm{H} N \mathrm{NR}$	2.86 s and $3.10 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.68 \mathrm{~s}$ and $3.75 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.80 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}\right.$, $\mathrm{H}-6^{\prime}$); $7.25 \mathrm{~m}, 4 \mathrm{H}$ (remaining ArH)
XV'ff	UV	250 (4.17), infl. 280 (3.92)
	IR	$\begin{aligned} & 765,775,835(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1023,1228,1251\left(\mathrm{ArOCH}_{3}\right) ; 1500,1581,3045,3075(\mathrm{Ar}) \text {; } \\ & 1630\left(\mathrm{ArCONR}_{2}\right) \end{aligned}$
	${ }^{1} \mathrm{H} \mathrm{NMR}$	$2 \cdot 82 \mathrm{~s}$ and $3.09 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.78 \mathrm{~s}$ and $3.83 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.70-7.30 \mathrm{~m}, 7 \mathrm{H}(\mathrm{ArH})$

Table II
(Continued)

Compound	Spectrum	Data
XVIIa	UV IR ${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 250(4 \cdot 02), 284(3 \cdot 84) \\ & 750,778\left(4 \text { adjacent Ar-H); } 1020,1245,1290,1315\left(\mathrm{ArOCH}_{3}\right) ; 1480,1505,1575,1590,3060(\mathrm{Ar})\right. \text {; } \\ & 1635\left(\mathrm{ArCONR}_{2}\right) \\ & 1 \cdot 08 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \text { of ethyl, } J=7 \cdot 0\right) ; 1 \cdot 25 \mathrm{t}, 3 \mathrm{H}\left(\mathrm{CH}_{3} \text { of the second ethyl, } J=7 \cdot 0\right) ; 3.18 \mathrm{q} \text { and } 3 \cdot 55 \mathrm{q} \text {, } \\ & 2+2 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}, J=7 \cdot 0 ; 7 \cdot 0\right) ; 3 \cdot 78 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6 \cdot 70-7 \cdot 40 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH}) \end{aligned}$
XIXa	$\begin{aligned} & \text { UV } \\ & \text { IR } \\ & { }^{1} \mathrm{H} \text { NMR } \end{aligned}$	250 (4.04), 284 (3.85) $1.14 \mathrm{bdd}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of one 2-propyl, $\left.J=6.0\right) ; 1.58 \mathrm{~d}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of the second 2-propyl, $\left.J=6.0\right)$; $3.55 \mathrm{~m}, 2 \mathrm{H}(\mathrm{CHNCH}) ; 3.80 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6 \cdot 60-7.40 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
XIXb	UV IR ${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 250(3 \cdot 97), 280(3 \cdot 80) \\ & 679,739,755,790,870\left(4 \text { and } 3 \text { adjacent and solitary Ar-H); } 1030,1040,1232\left(\mathrm{ArOCH}_{3}\right) ;\right. \\ & 1370,1375\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1475,1574,1589,1593,3070(\mathrm{Ar}) ; 1630\left(\mathrm{ArCONR}_{2}\right) \\ & 1 \cdot 10 \mathrm{bd}, 6 \mathrm{H} \mathrm{(2} \mathrm{CH} \text { of one 2-propyl);1.53 d, } 6 \mathrm{H}\left(2 \mathrm{CH}_{3} \text { of the second } 2 \text {-propyl, } J=6 \cdot 0\right) ; 3 \cdot 50 \mathrm{bm} \text {, } \\ & 2 \mathrm{H}(\mathrm{CHNCH}) ; 3 \cdot 70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6 \cdot 60-7 \cdot 30 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH}) \end{aligned}$
IIb	IR ${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 687,752,856\left(4 \text { and } 3 \text { adjacent and solitary Ar-H); } 1229,1247,1280\left(\mathrm{ArOCH}_{3}\right) ; 1574,1587(\mathrm{Ar}) ;\right. \\ & 2758,2807\left(\mathrm{OCH}_{3} \text { and } \mathrm{NCH}_{3}\right) \\ & 2 \cdot 22 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3 \cdot 50 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 3.68 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.72 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; \\ & 7 \cdot 15 \mathrm{~m}, 5 \mathrm{H}(\text { remaining ArH }) \end{aligned}$
IIc	IR ${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 747,815,825(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1025,1240\left(\mathrm{ArOCH}_{3}\right) ; 148 \mathrm{f}, 1568,1588,3005,3055(\mathrm{Ar}) ; \\ & 2751,2755,2780,2800\left(\mathrm{NCH}_{3}\right) \\ & 2 \cdot 28 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3 \cdot 55 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 3 \cdot 80 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6 \cdot 88 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{J}=8 \cdot 5\right) \text {; } \\ & 7 \cdot 10 \mathrm{~m}, 4 \mathrm{H}(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6) ; 7 \cdot 38 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}, J=8 \cdot 5\right) \end{aligned}$
IId	IR ${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 760,825,879\left(4 \text { and } 2 \text { adjacent and solitary Ar-H); } 1025,1210,1255,1280\left(\mathrm{ArOCH}_{3}\right) ; 1490,1590\right. \text {, } \\ & 3000,3050(\mathrm{Ar}) ; 2710,2760,2815\left(\mathrm{NCH}_{3}\right) \\ & 2 \cdot 25 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3 \cdot 55 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 3 \cdot 70 \mathrm{~s} \text { and } 3.79 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6 \cdot 40 \mathrm{~m}, 2 \mathrm{H} \\ & \left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 6 \cdot 70-7 \cdot 40 \mathrm{~m}, 5 \mathrm{H}(\text { remaining ArH }) \end{aligned}$

$I I d-\mathrm{HBr}$	MS	$\begin{aligned} & 303\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S} .7\right), 227\left(\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{OS}, 9\right), 265\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NS}, 100\right), 164(58), 150\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NS} .56\right) \\ & 132(44), 91(17), 58(42) \end{aligned}$
	IR	753, 804, 852 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1024,1165,1210\left(\mathrm{ArOCH}_{3}\right) ; 1570,1590,3000$, $3050(\mathrm{Ar}) ; 2460,2620\left(\mathrm{NH}^{+}\right)$
IIe	IR ${ }^{\text {b }}$	760, 800, 861 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1020,1043,1218,1270\left(\mathrm{ArOCH}_{3}\right) ; 1485,1587$, $3050(\mathrm{Ar}) ; 2770,2810,2830\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2.20 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.58 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 3.58 \mathrm{~s} \text { and } 3.74 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.41 \mathrm{~d}, 1 \mathrm{H} \\ & \left(\mathrm{H}-6^{\prime}, J=2.5\right) ; 6.60 \mathrm{dd}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}, J=8.5 ; 2.5\right) ; 6.78 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-3^{\prime}, J=8.5\right) ; 7.00-7.50 \mathrm{~m}, 4 \mathrm{H} \\ & \text { (remaining ArFi) } \end{aligned}$
IIIc- HCl	IR	$\begin{aligned} & \text { 753, } 829(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1244\left(\mathrm{ArOCH}_{3}\right) ; 1497,1570,1590(\mathrm{Ar}) ; 2380,2495,2685\left(\mathrm{NH}_{2}^{+}\right) \text {; } \\ & \text { infl. } 3040(\mathrm{NH}) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR	$2.58 \mathrm{bs}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.79 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 4.30 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.85 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=8.5\right)$; $7.15 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5) ; 7.28 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}, J=8.5\right) ; 7.78 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) ; 9.85 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}^{+}\right)$
IIId	IR	750, 825, 835, 865 (4 and 2 adjacent and solitary Ar-H); $1030,1209,1288,1310\left(\mathrm{ArOCH}_{3}\right) ; 1489$, $1589,3000,3045(\mathrm{Ar}) ; 2790\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 3275,3325,3395(\mathrm{NH})$
	${ }^{1} \mathrm{H}$ NMR	$1.80 \mathrm{bs}, 1 \mathrm{H}(\mathrm{NH}) ; 2.40 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.74 \mathrm{~s}$ and $3.78 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 3.88 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right)$; $6.45 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 6 \cdot 80-7.40 \mathrm{~m}, 5 \mathrm{H}$ (remaining ArH)
IIIe	$1 \mathrm{R}^{\text {b }}$	755, 795, 870 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1043, $1220,1275\left(\mathrm{ArOCH}_{3}\right) ; 1485,1586,3000$, 3055 (Ar); $2790,2835\left(\mathrm{OCH}_{3}, \mathrm{NCH}_{3}\right) ; 3320(\mathrm{NH})$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 1.75 \mathrm{~s}, 1 \mathrm{H}(\mathrm{NH}) ; 2.40 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.60 \mathrm{~s} \text { and } 3 \cdot 80 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 3.88 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) \\ & 6.39 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-6^{\prime}, J=2 \cdot 5\right) ; 6.65 \mathrm{dd}, 1 \mathrm{H}\left(\mathrm{H}^{\prime} 4^{\prime}, J=8.5 ; 2 \cdot 5\right) ; 6.82 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-3^{\prime}, J=8 \cdot 5\right) \\ & 7 \cdot 10-7.50 \mathrm{~m}, 4 \mathrm{H}(\text { remaining } \mathrm{ArH}) \end{aligned}$
IVa	IR	750, 760 (4 adjacent $\mathrm{Ar}-\mathrm{H}$); $1240\left(\mathrm{ArOCH}_{3}\right) ; 1574,3$ 010, 3050,3085 (Ar); 3 300, 3 365, $3435\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$1.54 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 3.90 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.98 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.70-7.50 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$I V C-\mathrm{HCl}$	IR	760, 800, 845, 885 (4 and 2 adjacent and solitary Ar-H); 1 032, $1249,1290\left(\right.$ ArOCH $_{3}$); 1480, 1491 , $1570,1590(\mathrm{Ar}) ; 2610,2705,2730\left(\mathrm{NH}_{3}^{+}\right)$; infl. $3090\left(\mathrm{NH}_{2}\right)$

Table II
(Continued)

Compound	Spectrum	Data
IVd	UV	248 (4.14), 284 (3.87)
	$I^{\text {c }}$	745, 796, 825, 865 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); $1210,1305\left(\mathrm{ArOCH}_{3}\right) ; 1485,1575,1594$, $3000,3050(\mathrm{Ar}) ; 3315,3380,3430\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 1 \cdot 60 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 3 \cdot 80 \mathrm{~s}, 6 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 3.98 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.45 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; \\ & 6 \cdot 90-7 \cdot 40,5 \mathrm{H} \text { (remaining ArH) } \end{aligned}$
IVe	IR	765, 805, 860 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1020, $1045,1060,1220,1275\left(\mathrm{ArOCH}_{3}\right)$; $1485,1590,3000,3090(\mathrm{Ar}) ; 1620,3315,3380\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 1.60 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 3.62 \mathrm{~s} \text { and } 3.85 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 3.98 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.32 \mathrm{~d}, 1 \mathrm{H} \\ & \left(\mathrm{H}-6^{\prime}, J=2.5\right) ; 6.65 \mathrm{dd}, 1 \mathrm{H}\left(\mathrm{H}-4^{\prime}, J=8.5 ; 2.5\right) ; 6.80 \mathrm{~d}, 1 \mathrm{H}\left(\mathrm{H}-3^{\prime}, J=8.5\right) ; 7 \cdot 10-7.50 \mathrm{~m}, \\ & 4 \mathrm{H}(\text { remaining } \mathrm{ArH}) \end{aligned}$
IVf	IR	752, 809,888 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1024, $1229,1259\left(\mathrm{ArOCH}_{3}\right) ; 1505,1584,3000$. 3040 (Ar); 1610, $3313,3375\left(\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 1.48 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 2.75 \mathrm{~s} \text { and } 2.81 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 3.90 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.60-7.40 \mathrm{~m}, \\ & 7 \mathrm{H}(\mathrm{ArH}) \end{aligned}$
$1 / a-\mathrm{HCl}$	UV	249 (3.94), 284 (3.77)
	IR	$\begin{aligned} & 750,784(4 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1020,1245,1275\left(\mathrm{ArOCH}_{3}\right) ; 1480,1580,1592,3050,3080(\mathrm{Ar}) ; \\ & 2590,2690\left(\mathrm{NH}^{+}\right) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR	$1.25 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of ethyls, $\left.J=7.0\right) ; 3.1 \mathrm{q},\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}, J=7.0\right) ; 3.80 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 4.45 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.80-7.50 \mathrm{~m}$ and $8.10 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$V b$	IR ${ }^{\text {b }}$	689, 755, 777, 860 (4 and 3 adjacent and solitary Ar-H); 1042, $1248\left(\mathrm{ArOCH}_{3}\right) ; 1479,1590,3055$ (Ar); $2800\left(\mathrm{CH}_{2}-\mathrm{N}\right)$
	${ }^{1} \mathrm{H}$ NMR	$1.00 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of ethyls, $\left.J=7.0\right) ; 2.50 \mathrm{q}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}, J=7.0\right) ; 3.65 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{OCH}_{3}\right.$ and $\left.\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.50-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$

Table II
(Continued)

Compound	Spectrum	Data
XXIa	UV	249 (3.90), 287 (3.76)
	IR	758 (4 adjacent Ar-H); $1205,1250,1300$ (ArOH); $1558,1588,3005,3050$ (Ar); 2515,2620 (NH^{+})
	${ }^{1} \mathrm{H}$ NMR	$2.35 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.62 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) .6 .60-7.70 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$X X I b$	UV	250 (3.99), 280 (3.76), 287 (3.76), infl. 294 (3.70)
	IR	685, 755, 770, 840, 895 (4 and 3 adjacent and solitary Ar-H); 1262 (ArOH); 1580,3045 (Ar); 2580 $\left(\mathrm{NH}^{+}\right)$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2.15 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.60 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.25-6.80 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; 6.90-7.50 \mathrm{~m}, 5 \mathrm{H} \\ & \text { (remaining ArH)} 9.05 \mathrm{bs}, 1 \mathrm{H}(\mathrm{OH}) \end{aligned}$
$X X 1 b-\mathrm{HM}^{f}$	MS	$\begin{aligned} & 259\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NOS}, 79\right), 244(55), 213(74), 197(14), 184(9), 165(23), 152(12), 137(18), 132(45) \\ & 121(16), 91(23), 58(100), 44(31), 28(90) \end{aligned}$
XXIc	UV	231 (4-17), 274 (4-19), infl. 280 (3.82)
	IR	$\begin{aligned} & 750,829(4 \text { and } 2 \text { adjacent Ar-H); } 1240,1270(\mathrm{ArOH}) ; 1492,1582,1587,1596,3045(\mathrm{Ar}) ; 2465 \text {, } \\ & 2505,2640\left(\mathrm{NH}^{+}\right) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2.35 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.58 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.63 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=8.5\right) ; 6.80-7.40 \mathrm{~m}, 4 \mathrm{H} \\ & (\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6) ; 7.19 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}, J=8.5\right) ; 8.75 \mathrm{~s}, 1 \mathrm{H}(\mathrm{OH}) \end{aligned}$
XXId	MS	$\begin{aligned} & 275\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}, 36\right), 260\left(\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}, 7\right) ; 229\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{2} \mathrm{~S}, 18\right), 165\left(\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NS}, 60\right) ; 164 \\ & (50), 150(34), 132\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}, 42\right), 91(30), 58(100), 44(42), 42(49) \end{aligned}$
	UV	245 (4.04), 290 (3.76)
	IR	$\begin{aligned} & 760,785,860(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1195,1254(\mathrm{ArOH}) ; 1560,3050(\mathrm{Ar}) ; 2480,2580\left(\mathrm{NH}^{+}\right) \text {; } \\ & 3220(\mathrm{OH}) \end{aligned}$
	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$	$\begin{aligned} & 2.16 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.50 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.20 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 6.80-7.30 \mathrm{~m}, 5 \mathrm{H} \\ & \text { (remaining ArH) } \end{aligned}$

\bigcirc	XXIe	UV	infl. 235 (3.98), 312 (3.71)
$\stackrel{\square}{9}$		IR	755, 760,795, 812, 835, 875 (4 and 2 adjacent and solitary At-H); 1210, $1255(\mathrm{ArOH}) ; 1565,1600$ (Ar); $2650,2720\left(\mathrm{NH}^{+}\right) ; 3460(\mathrm{OH})$
$\stackrel{\text { \% }}{\substack{3 \\ 3}}$		${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$	$2.14 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3 \cdot 48 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.55 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.18 \mathrm{~m}, 4 \mathrm{H}$ (remaining ArH); $9 \cdot 20 \mathrm{bs}, 1 \mathrm{H}(\mathrm{OH})$
$\stackrel{3}{3}$	XXIf	UV	$248 \cdot 5$ (4.11), 287 (3.81)
$\stackrel{\circ}{3}$		IR	755, 820, 855 (4 and 2 adjacent and solitary Ar-H); 1255 (ArOH); 1590,3050 (Ar); infl. $2500\left(\mathrm{NH}^{+}\right)$; $3365(\mathrm{OH})$
$\stackrel{3}{5}$		${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a }}$	$2 \cdot 20 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.50 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.70-7.50 \mathrm{bm}, 7 \mathrm{H}(\mathrm{ArH})$
$\stackrel{\text { or }}{ }$	XXIIa	UV	247 (3.87), 287 (3.76)
\%		IR	760, 766 (4 adjacent Ar-H); 1248 (ArOH); $1565,3020,3040,3070$ (Ar$) ; 2380$ (NH^{+})
-		${ }^{1} \mathrm{H}$ NMR	$2.42 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.90 \mathrm{s} ,2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 7.00 \mathrm{~s} \mathrm{} ,1 \mathrm{H}(\mathrm{OH}) ; 6.60-7.70 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
\%	XXIIb	UV	248 (3.96), 277 (3.73), 286 (3.75)
		IR	757, 780, 893 (4 and 2 adjacent and solitary Ar-H); 1156 (ArOH); 1575,1593 (Ar); 3260 (OH, NH)
		${ }^{1} \mathrm{H} \mathrm{NMR}^{a}$	$2.25 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.71 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5.10$ flat s, $2 \mathrm{H}(\mathrm{OH}$ and NH$) ; 6.50-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
	XXIIC	UV	infl. 230 (4.11), 248 (4-15), infl. 276 (3.81)
		IR ${ }^{\text {c }}$	755, 830, 849 (4 and 2 adjacent Ar-H); 1240, 1279 (ArOH); $1572,1593,3053,3070$ (Ar); $2470,2550,2640\left(\mathrm{NH}_{2}^{+}\right) ; 3275,3420(\mathrm{OH}, \mathrm{NH})$
		${ }^{1} \mathrm{H}$ NMR	$\begin{aligned} & 2.40 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.88 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5.98 \mathrm{bs}, 2 \mathrm{H}(\mathrm{NH} \text { and } \mathrm{OH}) ; 6.60 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; \\ & 7.15 \mathrm{~m}, 6 \mathrm{H} \text { (remaining ArH) } \end{aligned}$
	XXIId	IR	750, 770, 800, 849, 871 (4 and 2 adjacent and solitary Ar-H); 1110, 1140,1 190, 1230,1255 (ArOH); $1570,3040(\mathrm{Ar}) ; 2400\left(\mathrm{NH}_{2}^{+}\right) ; 3420(\mathrm{OH}, \mathrm{NH})$
		${ }^{1} \mathrm{H}^{\text {NMR }}{ }^{\text {a }}$	$2.35 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.81 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.25 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 6.60 \mathrm{bs}, 3 \mathrm{H}(2 \mathrm{OH}$ and NH$) ;$ $6.90-7.40 \mathrm{~m}, 5 \mathrm{H}$ (remaining ArH)
	XXIIe	UV	infl. $242 \cdot 5$ (3.74), 311 (3.54)
		IR	750, 812,858 (4 and 2 adjacent and solitary Ar-H); 1160, 1215 (ArOH); 1570, 1600 (Ar); $2380,2480,2660\left(\mathrm{NH}_{2}^{+}\right)$
		${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$	$\begin{aligned} & 2.23 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.75 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.20 \mathrm{bs}, 3 \mathrm{H}(2 \mathrm{OH} \text { and } \mathrm{NH}) ; 6.50 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; \\ & 7.25 \mathrm{~m}, 4 \mathrm{H} \text { (remaining ArH) } \end{aligned}$

Table II
(Continued)

Compound	Spectrum	Data
XXIIf	UV	248 (4•11), 287 (3•81)
	IR	753, 809, 860 (4 and 2 adjacent and solitary Ar-H); $1260(\mathrm{ArOH}) ; 1587,3050(\mathrm{Ar}) ; 2600\left(\mathrm{NH}_{2}^{+}\right)$; infl. 3 150, 3290 (OH and NH)
	${ }^{1} \mathrm{H} \mathrm{NMR}^{\boldsymbol{a}}$	$2.05 \mathrm{bs}, 3 \mathrm{H}\left(\mathrm{NCH}_{3}\right) ; 3.50 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5.40 \mathrm{bs}, 3 \mathrm{H}(2 \mathrm{OH}$ and NH$) ; 6.40-7.20 \mathrm{bm}, 7 \mathrm{H}(\mathrm{ArH}$
XXIIIa	UV	247 (3.98), 286 (3.78)
	IR	750, 759, 767 (4 adjacent Ar--H); 1120, 1148 (ArOH); 1 543, 1580 (Ar); 2 330, 2 410, 2580 $\left(\mathrm{NH}_{3}^{+}\right) ; 3140,3280,3335\left(\mathrm{OH}, \mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a }}$	$3.82 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5.20 \mathrm{bs}, 3 \mathrm{H}\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right) ; 6.50-7.50 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
XXIIIb	UV	248 (4.00), infl. 279 (3.70); 285 (3.72); 294 (3.65)
	IR	690, 749, 780, 864, 892 (4 and 3 adjacent and solitary Ar-H); 1232, 1279 (ArOH); 1500,1 571, 1590 , $3050(\mathrm{Ar}) ; 1640\left(\mathrm{NH}_{2}\right) ; 2560,2630\left(\mathrm{NH}_{3}^{+}\right) ; 3220,3295,3335,3365,3400\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right)$
	${ }^{1} \mathrm{H}$ NMR	$3.80 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 4.50 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{NH}_{2}\right) ; 6.60 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right) ; 6.90-7.70 \mathrm{~m}, 6 \mathrm{H}$ (remaining ArH)
XXIIIC	UV	248 (4.01), infl. 285 (3.69)
	IR	$\begin{aligned} & 739,830(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1252,1276(\mathrm{ArOH}) ; 1490,1578,3050(\mathrm{Ar}) ; 2550,2645\left(\mathrm{NH}^{+}\right) \text {; } \\ & 3290,3345\left(\mathrm{OH} \text { and } \mathrm{NH}_{2}\right) \end{aligned}$
	${ }^{1} \mathrm{H} \mathrm{NMR}^{a}$	$3.75 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 4 \cdot 30$, bs, $3 \mathrm{H}\left(\mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right) ; 6.80 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=9.0\right) ; 7.20 \mathrm{~d}, 2 \mathrm{H}$ ($\mathrm{H}-\mathbf{2}^{\prime}, \mathrm{H}-6^{\prime}, J=9 \cdot 0$); $6.70-7.50 \mathrm{~m}, 4 \mathrm{H}$ (remaining ArH)
XXIIIe	UV	241 (3.80), 311 (3.59)
	IR	$760,765,776,822,830,860,872$ (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1192. 1205 (ArOH); $1475,1580,1604(\mathrm{Ar}) ; 2520\left(\mathrm{NH}_{3}^{+}\right) ; 2290,2350,3415\left(\mathrm{OH}, \mathrm{NH}_{3}\right)$
	${ }^{1} \mathrm{H}$ NMR ${ }^{a}$	$3.75 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5.20 \mathrm{bs}, 4 \mathrm{H}\left(2 \mathrm{OH}\right.$ and $\left.\mathrm{NH}_{2}\right) ; 6.20-6.70 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.25 \mathrm{~m}$, 4 H (remaining ArH)

\bigcirc	XXIIIf	UV	250 (4.11), 287 (3.82)
$\stackrel{\stackrel{1}{7}}{\stackrel{\sim}{7}}$		IR	755.813, 871 (4 and 2 adjacent and solitary Ar-H): $1210(\mathrm{ArOH}), 1492,1589(\mathrm{Ar}) ; 2560\left(\mathrm{NH}_{3}^{+}\right):$
-		${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }}$	$\begin{aligned} & 3180,3280,3340\left(\mathrm{OH}, \mathrm{NH}_{2}\right) \\ & 3 \cdot 80 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 5 \cdot 25 \mathrm{bs}, 4 \mathrm{H}\left(2 \mathrm{OH} \text { and } \mathrm{NH}_{2}\right) ; 6 \cdot 50-7 \cdot 50 \mathrm{bm}, 7 \mathrm{H}(\mathrm{~A}, \mathrm{H}) \end{aligned}$
0 0 0 \cdots 0	$X X I V-\mathrm{HCl}$	$\begin{aligned} & \mathrm{UV} \\ & \mathrm{IR}^{d} \end{aligned}$	$\begin{aligned} & 250(4 \cdot 20), 270(4 \cdot 14), 286(4 \cdot 11) \\ & 754,780(4 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1293,1350(\mathrm{ArOH}) ; 1472,1494,1585(\mathrm{Ar}) ; 2490,2560,2645, \\ & 2715\left(\mathrm{NH}^{+}\right) ; 3430(\mathrm{OH}) \end{aligned}$
O 3 3 3 $!$		${ }^{1} \mathrm{H} \mathrm{NMR}^{a}$	$1.35 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of ethyls, $\left.J=7.0\right) ; 3.20 \mathrm{q}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of diethylamino, $\left.J=7.0\right) ; 4.54 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.70-7.50 \mathrm{~m}$ and $8.05 \mathrm{~m}, 7+1 \mathrm{H}(\mathrm{ArH})$
\bigcirc	$X X I V b-\mathrm{HCI}$	MS	$287\left(\mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{21}\right.$ NOS, 40), 272 (50), 258 (30), 215 (90), 213 (100)
\bigcirc		UV	245 (4.22), 271 (3.98), 284 (3.95), 294 (3.90)
等		IR	700. 753, 805, 882, 894 (4 and 2 adjacent and solitary Ar-H); 1215, 1300 (ArOH); 1581 (Ar); $2755\left(\mathrm{NH}^{+}\right) ; 3155(\mathrm{OH})$
$\stackrel{\text { O}}{\mathbf{O}}$		${ }^{1} \mathrm{H}^{\text {NMR }}{ }^{a, d, c}$	$1.31 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of ethyils, $\left.J=7 \cdot 0\right) ; 3 \cdot 18 \mathrm{q}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of dicthylamino, $\left.J=7 \cdot 0\right) ; 4.48 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.80-7.60 \mathrm{~m}$ and $8.15 \mathrm{~m}, 7+1 \mathrm{H}(\mathrm{ArH})$
	$X X I V C-\mathrm{HCl}$	UV	$246(4.41)$, infl. $268(4 \cdot 27)$, infl. $292(4.05)$
		IR	$\begin{aligned} & 750.848(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1217,1280(\mathrm{ArOH}) ; 1490,1572,1595(\mathrm{Ar}) ; 2625\left(\mathrm{NH}^{+}\right) \text {; } \\ & 3040(\mathrm{OH}) \end{aligned}$
		${ }^{1} \mathrm{HNMR}{ }^{a, c}$	$1.35 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of ethyls, $\left.J=7.0\right) ; 3.20 \mathrm{bq}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of diethylamino $) ; 4.48 \mathrm{bd}, 2 \mathrm{H}$ ($\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=9 \cdot 0$) $; 7 \cdot 10-7 \cdot 60 \mathrm{~m}, 5 \mathrm{H}\left(14-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right) ; 8.10 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$
	$X X V a-\mathrm{HCl}$	UV	249 (3.87), 286 (3.76)
		IR	$\begin{aligned} & 752,770(4 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1295,1350(\mathrm{ArOH}) ; 1490,1584(\mathrm{Ar}) ; 2520,2553,2605\left(\mathrm{NH}^{+}\right) ; \text {infl. } \\ & 3060(\mathrm{OH}) \end{aligned}$
		HNMR ${ }^{a . g}$	$0.85 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of propyls, $\left.J=7.0\right) ; 1.75 \mathrm{~m}, 4 \mathrm{H}\left(2 \mathrm{CH}_{2}\right.$ in positions 2 and 2^{\prime} of propyls); $3.00 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of dipropylamino $) ; 4.45 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.60-7.40 \mathrm{~m}$ and $7.98 \mathrm{~m}, 7+1 \mathrm{H}$ (ArH)
	$X X V b-\mathrm{HCl}$	UV	244 (4.00), 284 (3.72)
		IR	710, 751, 760, 800, 890 (4 and 3 adjacent and solitary Ar-H); 1220,1250 (ArOH); 1486, 1586 (Ar); $2518,2580\left(\mathrm{NH}^{+}\right) ; 3125(\mathrm{OH})$
		${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a,e }}$	$0.85 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of propyls); $1.80 \mathrm{bm}, 4 \mathrm{H}\left(2 \mathrm{CH}_{2}\right.$ in positions 2 and 2^{\prime} of propyls); $2.98 \mathrm{bm}, 4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of dipropylamino) ; $4.50 \mathrm{bd}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.60-7.60 \mathrm{~m}, 7 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-4, \mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right.$, H-5', H-6'); $8 \cdot 12 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$

Table II
(Continued)

Compound	Spectrum	Data
$X X V C-\mathrm{HCl}$	UV	246 (4.37), infl. 269 (4.21), infl. 292 (3.98)
	IR	$\begin{aligned} & 754,840(4 \text { and } 2 \text { adjacent } \mathrm{Ar}-\mathrm{H}) ; 1277(\mathrm{ArOH}) ; 1493,1579,1595(\mathrm{Ar}) ; 2525,2625,2700\left(\mathrm{NH}^{+}\right) \text {; } \\ & 3100(\mathrm{OH}) \end{aligned}$
	${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a,e }}$	$0.90 \mathrm{t}, 6 \mathrm{H}\left(2 \mathrm{CH}_{3}\right.$ of propyls $) ; 1.85 \mathrm{~m}, 4 \mathrm{H}\left(2 \mathrm{CH}_{2}\right.$ in positions 2 and 2^{\prime} of propyls); $3.05,4 \mathrm{H}$ $\left(\mathrm{CH}_{2} \mathrm{NCH}_{2}\right.$ of dipropylamino $) ; 4 \cdot 51 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6 \cdot 95 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=9 \cdot 0\right) ; 7 \cdot 10-7 \cdot 50 \mathrm{~m}$, $5 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}\right) ; 8.10 \mathrm{~m}, 1 \mathrm{H}(\mathrm{HI}-6)$
XXVIa	MS	$\begin{aligned} & 315\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NOS}, 14\right), 300(26), 287(1), 273(7), 272(3), 230(5), 215(78), 213(100), \\ & 197(7), 185(10), 181(10), 91(32), 86(22) \end{aligned}$
$X X V I a-\mathrm{HCl}$	UV	247 (3.92), 283 (3.81)
	IR	$\begin{aligned} & 749,753(4 \text { adjacent } A r-H) ; 1117,1170(\mathrm{ArOH}) ; 1480,1582(\mathrm{Ar}) ; 2510,2555,2650 \\ & 2680\left(\mathrm{NH}^{+}\right) ; 3070(\mathrm{OH}) \end{aligned}$
	${ }^{1} \mathrm{H} \mathrm{NMR}^{\text {a,e }}$	1.40 d and $1.49 \mathrm{~d}, 6+6 \mathrm{H}\left(4 \mathrm{CH}_{3}\right.$ of 2-propyls, $\left.\left.J=6.5\right) ; 3.80 \mathrm{~m}, 2 \mathrm{HCHNCH}\right) ; 4.55 \mathrm{bd}, 2 \mathrm{H}$ ($\mathrm{ArCH}_{2} \mathrm{~N}$); 6.80-7.50 m, $7 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}^{\prime} 6^{\prime}\right) ; 8.08 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$
$X X r^{\prime} I b-\mathrm{HBr}$	MS	$\begin{aligned} & 315\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{25} \text { NOS, } 9\right), 300(37), 272(1 \cdot 5), 215(73), 213(100), 197(6), 185(7), 181(8), 91(12), \\ & 86(11) \end{aligned}$
$X X V I b-\mathrm{HCl}$	UV	infl. 245 (4.12), infl. 269 (3.94), 284 (3.86), infl. 290 (3.85)
	IR	690, 755, 790, 892 (4 and 3 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1221 (ArOH); 1480, 1575, 1585, 1593 , 1605 (Ar); $2665\left(\mathrm{NH}^{+}\right) ; 3100(\mathrm{OH})$
	${ }^{1} \mathrm{H}$ NMR ${ }^{\text {a }, e}$	1.36 d and $1.45 \mathrm{~d}, 12 \mathrm{H}\left(4 \mathrm{CH}_{3}\right.$ of 2-propyls, $\left.J=6.5\right) ; 3.80 \mathrm{bm}, 2 \mathrm{H}(\mathrm{CHNCH}) ; 4.52 \mathrm{bd}, 2 \mathrm{H}$ ($\mathrm{ArCH}_{2} \mathrm{~N}$) $; 6.60-8.20 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$
$X X V I C-H C l$	UV	246 (4-22)
	IR	$\begin{aligned} & 750,843\left(4 \text { and } 2 \text { adjacent Ar-H); } 1230,1268(\mathrm{ArOH}) ; 1497,1576,1594(\mathrm{Ar}) ; 2645\left(\mathrm{NH}^{+}\right)\right. \text {; } \\ & 3055(\mathrm{OH}) \end{aligned}$
	${ }^{1} \mathrm{H} \mathrm{NMR}^{a, e}$	1.41 d and $1.49 \mathrm{~d}, 12 \mathrm{H}\left(4 \mathrm{CH}_{3}\right.$ of 2-propyls, $\left.J=6.5\right) ; 3.80 \mathrm{bm}, 2 \mathrm{H}(\mathrm{CHNCH}) ; 4.51 \mathrm{bd}, 2 \mathrm{H}$ $\left(\mathrm{ArCl}_{2} \mathrm{~N}\right) ; 6.95 \mathrm{~d}, 2 \mathrm{H}\left(\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}, J=9 \cdot 0\right) ; 7 \cdot 10-7 \cdot 60 \mathrm{~m}, 5 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}\right) ; 8.10 \mathrm{~m}$, 1 H (H-6)

[^0]to crystalline salts and spectra were recorded either with these salts or with the homogeneous bases. The amine $I I b$ proved an important intermediate and, therefore, its preparation was investigated more carefully. It was first found that it is possible to reduce XVIb with diborane (for the method, cf. ref. ${ }^{17}$) generated "in situ" by reaction of sodium borohydride with boron trifluoride etherate in tetrahydrofuran (ref. ${ }^{18}$). The primary product, which was isolated as a crystalline solid after mild acid hydrolysis of the reaction mixture, was identified as the amine borane $X X X I I I$. A similar product was isolated by us ${ }^{19}$ in an attempt to reduce an enamine by the same reducing agent. Hydrolysis of $X X X I I I$ with sodium hydroxide in boiling aqueous ethanol gave smoothly the desired $I I b$ and when the step of hydrolysis was inserted into the whole procedure, there resulted an advantageous process for preparing $I I b$ from $X V I b$ in a satisfactory yield. Another possibility was found in the reaction of XVIb with phosphoryl chloride, followed by sodium borohydride in ethanol (for the method, cf. ref. ${ }^{20}$). The reaction proceeds probably via the Vilsmeier complex $X X X I V\left(\right.$ ref. ${ }^{21}$), which is reduced. The desired II b was obtained in the form of hydrochloride in a rather low yield. Two minor by-products were isolated from the neutral fraction. The first of them was identified as the already mentioned 3-methoxythioxanthone (XXXII) being probably formed by cyclization of the amide XVIb with phosphoryl chloride (another case of cyclization of a tertiary amide to a tricyclic ketone was observed some time ago ${ }^{22}$). The second by-product, being $\mathrm{C}_{14} \mathrm{H}_{12}$. .OS (analysis and mass spectrum), is assumed to be $X X X V$ which is in good agreement with its spectra. Such a compound could have been formed either by direct reduction of $X X X I I$ or via the corresponding 9 -hydroxy compound and by its disproportionation (cf. ref. ${ }^{23}$). Another possibility for preparing $I l b$ is the Leuckart reaction ${ }^{24}$ of $X I I b$ with dimethylformamide and formic acid at $180^{\circ} \mathrm{C}$ (cf. ref. ${ }^{25}$).

XXXII

XXXIV

XXXIII

XXXV

The amine $I I b$ was obtained in the form of hydrochloride in the yield of 75%. By chromatography of the neutral fraction, three minor by-products were separated. The less polar seems to correspond surprisingly to the compound considered to be $X X X V$ (melting point and comparison by TLC). The other is oily and its mass spectrum estimates its elemental composition as $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra identify the compound to be the formic ester $X X X V I$. The third one is again 3-methoxythioxanthone ($X X X I I$) whose formation here is rather obscure (similarly like that of $X X X V$).

The amine IId was prepared by method $D-I$ but in addition also from the aldehyde XIId in three steps: XIId was reduced with sodium borohydride in aqueous ethanol to 2-(2,4-dimethoxyphenylthio) benzyl alcohol which was transformed by treatment with thionyl chloride in boiling benzene to 2-(2,4-dimethoxyphenylthio)benzyl chloride. Its reaction with dimethylamine in chloroform in autoclave at $75^{\circ} \mathrm{C}$ gave $I I d$ which was transformed to the picrate (described in Experimental). Both of the intermediates were crystalline but were processed without characterization.

The methoxylated amines were demethylated to the phenolic amines XXIa to $X X I I I f$ and $X X I V a-X X V I c$ using two general methods: (i) heating with pyridine hydrochloride to $210-220^{\circ} \mathrm{C}$ (bath temperature) (method E) and (ii) treatment with boron tribromide in chloroform at room temperature (method F). The most important amine $X X I b$ was prepared by two further methods (see Experimental). The first consisted in demethylation of $I I b$ with concentrated hydrobromic acid at $120^{\circ} \mathrm{C}$. The second method was an attempt to carry out the synthesis of $X X I b$ without protecting the phenolic hydroxyl by O-methylation, which was successful, in principle. 3-Hydroxythiophenol ${ }^{26}$ was refluxed with 2 -iodobenzoic acid in aqueous potassium hydroxide in the presence of copper and gave $X X X b$ in a reasonable yield (the spectra corroborated the structure). The following reaction with dimethylamine, leading to $X X X I b$, was carried out in the presence of the complex of triphenylphosphine and tetrachloromethane in tetrahydrofuran (for the method, cf. ref. ${ }^{27}$); the desired $X X X I b$ was obtained by chromatography of the crude product. This method was found more favourable than that using titanium tetrachloride in tetrahydrofuran ${ }^{28}$. Reduction of $X X X I b$ with lithium aluminium hydride in tetrahydrofuran gave $X X I b$ in a high yield. The phenolic bases XXIa-XXIIIf were crystalline; amines $X X I V a-X X V I c$ (with the exception of $X X V I a$) were oily. All
the bases were transformed to crystalline salts and the spectra were recorded either with the crystalline bases or hydrochlorides.

For introducing a chiral centre into the molecule of $X X I b$, the α-methyl homologue $X X V I I b$ was synthesized. The aldehyde $X I I b$ was reacted with methylmagnesium iodide in a mixture of ether and benzene and the obtained secondary alcohol $X X X V I I$ was treated with thionyl chloride in boiling benzene in the presence of a small amount of dimethylformamide to give the chloride $X X X V I I I$ whose reaction with dimethylamine in dioxane in the autoclave at $90^{\circ} \mathrm{C}$ gave VIIIb. Even under these conditions, more than 30% of the starting $X X X V I I I$ were recovered indicating a rather low reactivity of this benzylic chloro compound, probably due to steric hindrance. Demethylation of VIIIb with boiling hydrobromic acid afforded the crystalline racemic $X X V I I b$, obtained via the hydrobromide. Attempts to resolve $X X V I I b$ by means of $\mathrm{L}(-)$-malic acid were unsuccessful: the salt on crystallization remains diastereomeric mixture. It was necessary to resolve the precursor VIIIb which proceeded in the form of salts with $(-)-\mathrm{O}, \mathrm{O}^{\prime}$-dibenzoyl-L-tartaric and $(+)-\mathrm{O}, \mathrm{O}^{\prime}$-di-benzoyl-D-tartaric acids. The obtained homogeneous diastereoisomeric salts were decomposed with aqueous ammonia and the crude optically active bases VIIIb were directly demethylated with boiling hydrobromic acid. The resulting crystalline $(+)$ hydrobromide and $(-)$-hydrobromide gave by treatment with aqueous ammonia (-)-XXVIIb and $(+)-X X V I I b$, respectively.

$$
\begin{aligned}
& X X X V I I, \mathrm{R}=\mathrm{OH} \\
& X X X V I I, \mathrm{R}=\mathrm{Cl}
\end{aligned}
$$

Reaction of XIIIb with 2-dimethylaminoethylamine in benzene at $10-20^{\circ} \mathrm{C}$ gave the oily amide $X X b$ which was reduced without characterization with diborane "in situ" in tetrahydrofuran to $I X b$ (crystalline dihydrochloride and ${ }^{1} \mathrm{H} N \mathrm{NR}$ spectrum). This amine was methylated with formic acid and aqueous formaldehyde at $100^{\circ} \mathrm{C}$ (Eschweiler-Clarke method ${ }^{24}$) to $X b$ (dihydrochloride and spectra). The methoxy amines $I X b$ and $X b$ were demethylated by boiling hydrobromic acid to $X X V I I I b$ and $X X I X b$ (structures confirmed by ${ }^{1} \mathrm{H}$ NMR spectra).

Oxidation of $X X I b$ with hydrogen peroxide in acetic acid at room temperature (reaction time of 12 h) gave the sulfoxide $X X X I X$. Similar oxidation with a larger excess of hydrogen peroxide and longer reaction time (3-7 days) resulted in the formation of the sulfone $X L$, accompanied eventually by the sulfone N -oxide $X L I$,
separated on the basis of different solubility. Oxygen functions in these oxidation products were characterized by IR spectra and the overall structures were confirmed by ${ }^{1} \mathrm{H}$ NMR spectra.

$X X X I X, n=1$
$X L, n=2$

XLI

The compounds described in this communication were pharmacologically tested in the form of salts, described in the Experimental and in Table I. On the basis of preliminary findings, a part of the compounds was tested as potential antidepressants. In this line, they were administered orally and the doses given were calculated per bases. Table III assembles the code numbers of the compounds tested, their acute toxicities in mice (LD_{50}), and the IC_{50} values characterizing the affinities of the compounds to the binding sites of imipramine and desipramine in hypothalamus of the rat brain and the influence on re-uptake of 5 -hydroyxtryptamine in rat bxain and of noradrenaline in the rat brain cortex.
rin:-
The data in Table III were supplemented by some findings in animal tests, especially in the line of antireserpine activities: (i) Inhibition of reserpine-induced ptosis in mice, ED (significant effect) in $\mathrm{mg} / \mathrm{kg}$ (in parentheses the threshold doses): IIIa, 25; IIIb, 25; IIIc, 25 (10); IIIf, 25 (3); XXIa, 25 (10); XXIb, 25 (3); XXIc, 25 (10); XXId, 25 (10); XXIe, 25; XXIf, 25; XXIIa, >25; XXIIb, 25; XXIIc, 12.5; XXIId, >25; XXIIe, >25; XXIIf, 6.25; XXIIIa, >25; XXIIIb, >25; XXIIIc, >25; XXIIIf, $>25 ; X X I V b,>25 ; X X I V c,>25 ; X X V a,>25 ; X X V b,>25 ; X X V c,>300 ; X X V I a$, $>25 ; X X V I b,>300 ; X X V I c,>25 ;(\pm)-X X V I I b, 100(30) ;(+)-X X V I I b, 100(30)$; $(-)-X X V I I b, 100$. (ii) Antagonization of reserpine hypothermia in mice, ED (significant effect) in $\mathrm{mg} \mathrm{kg}: I I I b,>10$; IIIc and IIIf antagonize the hypothermia in doses of $10-100 \mathrm{mg} / \mathrm{kg}$ without relation of effect to the dose; XXIb, $10 ; X X I c,>10$; $X X I d,>10 ; X X I f, 10 ; X X I I b,>10 ; X X I I c,>10 ; X X I I f, 10 ; X X I I I b,>10$. (iii) Antagonization of the ulcerogenic effect of reserpine in rats, ED (significant effect) in mg/kg: IIIa, >50; IIIb, 50; IIIc, 50; IIIf, 50; XXIa, 50; XXIb, 50 (in the dose of $50 \mathrm{mg} / \mathrm{kg}$ it also inhibits the formation of the indomethacin-induced gastric ulcers in rats); XXIc, 50; XXId, >50; XXIf, 50; XXIIf, >50; XXIIIf, >50.

[^1]
Table III

Acute toxicity and biochemical pharmacology of some 2-(methoxy- and -hydroxy-phenylthio)benzylamine including standards

Compound	Code number VÚFB-	$\begin{aligned} & \mathrm{LD}_{50}{ }^{a} \\ & \mathrm{mg} / \mathrm{kg} \end{aligned}$	IC_{50} in nm			
			IMI ${ }^{\text {b }}$	DES ${ }^{\text {c }}$	$5 \mathrm{HT}^{\text {d }}$	NA^{e}
111a	15430	148	$34 \cdot 3$	49	24.2	$8 \cdot 2$
IIIb	15431	301	$29 \cdot 5$	293	11.8	7.0
IIIC	15432	189	6.7	2906	8.9	2405
IIIf	15433	153	$12 \cdot 2$	807.1	$151 \cdot 7$	11840
YXIa	15467	467	$191 \cdot 3$	1339	$-f$	- ${ }^{\text {d }}$
XXIb	15468	217	$3 \cdot 3$	2185	0.6	18812
XXIC	15469	209	$8 \cdot 2$	13.8	$2 \cdot 5$	$9 \cdot 4$
XXId	15596	210	39.6	1198	$183 \cdot 9$	1294
XXIf	15470	306	<100	>100	$4 \cdot 1$	1425
XXIIa	15427	458	<100	>100	f	$-f$
XXIIb	15428	343	17.7	>100	- f	- f
XXIIC	15429	162	<100	- ${ }^{\text {d }}$	$-f$	$-{ }^{f}$
XXIId	15531	448	>100	>100	- ${ }^{5}$	- ${ }^{\text {f }}$
XXIIe	15529	423	>100	>100	$-f$	-f
XXIIf	15466	630	>100	>100	$-f$	$-f$
XXIIIa	15424	>500	>100	>100	-f	$-f$
XXIII ${ }^{\text {b }}$	15425	c. 500	<500	>100	$-{ }^{f}$	- ${ }^{\text {f }}$
XXIIIC	15426	338	>500	>100	-- ${ }^{\text {f }}$	- f
XXIIIe	15528	598	>100	>100	$-f$	$-f$
XXIIIf	15465	665	>100	>100	$-{ }^{f}$	- ${ }^{\text {f }}$
XXIVb	17142	222	>100	>100	>100	>100
XXIVc	17144	404	>100	>100	>100	>100
$X X \vee a$	17112	>2000	>100	>100	>100	>100
$X X V b$	17140	1379	>100	>100	>100	>100
$X X V C$	17164	- ${ }^{\text {f }}$	>100	>100	$-{ }^{f}$	- ${ }^{\text {f }}$
XXVIa	17141	1146	>100	>100	>100	>100
$X X V I b$	17163	- ${ }^{\text {f }}$	>100	>100	- ${ }^{\text {f }}$	- ${ }^{\text {f }}$
XXVIC	17143	704	>100	>100	>100	>100
(\vdots)-XXVIII	17658	500^{9}	$-{ }^{f}$	- ${ }^{\text {f }}$	$72 \cdot 5$	4411
(1)-XXVIIb	17659	500^{9}	- ${ }^{\text {f }}$	- ${ }^{\text {d }}$	19.7	151
(-)-XXVIIb	17660	500^{9}	-f	$-f$	12.4	6606
$X_{X X I X}$	17655	500^{9}	-f	- f	$680 \cdot 5$	6910
$X L$	17656	500^{8}	$-{ }^{f}$	$-{ }^{f}$	$405 \cdot 7$	41023
$X L I$	17657	500^{9}	$-{ }^{f}$	- f	19171	29673
Citalopram			$29 \cdot 2$	3183	0.4	13718
Amitriptyline			$20 \cdot 2$	411.7		
Nortriptyline			391.8	$13 \cdot 3$		
Imipramine			10.9	$40 \cdot 0$		
Desipramine			317.5	$2 \cdot 0$		
Dosulepin			36.4	298.7		

On the basis of data given in Table III and in the last paragraph, it may be concluded that some of the methoxylated secondary amines (IIIc, IIIf) and especially some of the hydroxylated tertiary amines ($X X I b, X X I c, X X I d, X X I f$) are highly active and selective inhibitors of 5-hydroxytryptamine re-uptake in the brain structures and are active in the antireserpine tests. The most interesting compound of the series is $X X I b$ (hydrogen maleate VÚFB-15 468) showing a higher degree of selectivity of inhibition of 5-hydroxytryptamine re-uptake than the known citalopram ${ }^{29}$ and is undergoing preclinical studies. The stereoselectivity of action of enantiomers of $X X V I I b$ was shown only in the test of inhibition of re-uptake of $10 \mathrm{~nm}\left[{ }^{3} \mathrm{H}\right]$ noradrenaline in the cortex of rat brain: $(+)-X X V I I b$ is the active component of the racemate (see Table III).

A part of the compounds was tested within a general pharmacological screening program and only the positive results are mentioned here. Acute toxicity in mice, LD_{50} i.v. in mg/kg: IIa, 15; IIb, 30; IIc, 40; IId, 30; IIe, 25; IIf, 22•; IIId, 30; IIIe, $25 ; I V a, 15 ; I V b, 35 ; I V c, 60 ; I V d, 30 ; I V e, 25 ; I V f, 50 ; X X I e, 50$. Doses (D in mg/kg) used in the screening: IIa, $3 ; I I b, 6 ; I I c, 8 ; I I d, 6 ; I I e, 5 ; I I f, 4 ; I I I d, 6 ; I I I e, 5 ; I V a$, $3 ; I V b, 7 ; I V c, 12 ; I V d, 6 ; I V e, 5 ; I V f, 10 ; X X I e, 10$. Local anaesthetic effect (i) in the test of infiltration anaesthesia (concentration in \% bringing about a complete anaesthesia in 50% of the guinea-pigs): IIa, $0.5 ;$ IIb, $0 \cdot 5 ;$ IIe, $1 ; I I I e, 1 ; I \mathrm{Va}, 0.5-1$ (for procaine as the standard, $\mathrm{ED}=1 \%$); (ii) in the test of corneal anaesthesia (concentration in \% bringing about in 50% rabbits the complete anaesthesia of the eye cornea): IIa, $1 ; I I b, 1 ; I I d, 1 ; I I e, 1, I I I e, 1 ; I V a, 0 \cdot 5 ; I V b, 1$ (for trimecaine as the standard, $\mathrm{ED}=1 \%$). Hypotensive effect in normotensive anaesthetized rats: $I I a-I I f, I I I e, I V a-I V c, I V f$, and XXIe bring about brief and sharp drops of the blood pressure after doses D, administered intravenously. Spasmolytic effects on the isolated rat duodenum (concentrations in $\mathrm{mg} / 1$ reducing the contractions to 50%) against spasms induced by (i) acetylcholine: IIa and IIb, 1-10; IIIe, 1-10; XXIe, $1-10$; (ii) barium chloride: $I I a-I I d, 1-10 ; I I f, 10 ; I I I e, 1-10$.

The compounds were also tested for antimicrobial activity in vitro (microorganisms and the minimum inhibitory concentrations in mg / l, unless they exceed $100 \mathrm{mg} / \mathrm{l}$, are given): Streptococcurs β-haemolyticus, XXIe 50, XXIIe 50, XXIIIf 100, XXIVb 16, XXIVc 32, XXVb 8, XXVIa 16, XXVIc 8; Streptococcus faecalis, XXIVb 32, XXIVc 64, XXVb 8, XXVc 64, XXVIa 32, XXVIb 64, XXVIc 8; Staphylococcus pyogenes aureus, XXIe 25, XXIf 25, XXIIe 12.5, XXIIf 100, XXIIIe 100, XXIIIf 100, XXIVb 32, XXIVc 32, XXVb 16, XXVIa 64, XXIX'64; Pseudomonas aeruginosa, XXI 50, XXIf 100, XXIIe 50, XXIIf 100, XXIIIe 50, XXIIIf 50, XXIVb 64, XXIVc 64, XXVb 64, XXVIc 64; Escherichia coli, XXIVb 64; Proteus vulgaris, IIe 100, IIId 100, IIIf 100, IVe 100, XXIe 100, XXIf 50, XXIIe 50; XXIIf 25, XXIII 50, XXIIIf 25, XXIVb 64, XXIVc 64; Trichophyton mentagrophytes, IIIf 50, XXIIe 25, XXIIf 50, XXIIIe 50, XXIIIf 50, XXIVc, 50, XXVc 50, XXVIb 50.

EXPERIMENTAL

The melting points were determined in the Mettler FP-5 melting point recorder or in a Koffer block; the samples were dried in vacuo of about 60 Pa over $\mathrm{P}_{2} \mathrm{O}_{5}$ at room temperature or at a suitably elevated temperature. UV spectra (in methanol, $\lambda_{\text {max }}$ in $\mathrm{nm}(\log \varepsilon)$) were recorded with a Unicam SP 8000 spectrophotometer, IR spectra (mostly in Nujol, v in cm^{-1}) with a Per-kin-Elmer 298 (mostly) or a Shimadzu IR-4 351 spectrophotometer, NMR spectra (in CDCl_{3} unless stated otherwise, δ in ppm, J in Hz) mostly with the $\mathrm{CW}-\mathrm{NMR}$ spectrometer Tesla BS $487 \mathrm{C}\left({ }^{1} \mathrm{H}\right.$ at 80 MHz$)$ and partly with the FT-NMR spectrometer Tesla BS $567 \mathrm{~A}\left({ }^{1} \mathrm{H}\right.$ at 100 MHz , ${ }^{13} \mathrm{C}$ at 25.14 MHz), and the mass spectra (m / z, fragments and/or \%) with MCH 1320 and/or Varian MAT 44S (GC-MS) spectrometers. The homogeneity of the products and composition of the mixtures were checked bythin-layer chromatography (TLC) on silica gel (Silufol). The extracts were dried with $\mathrm{MgSO}_{4}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ or $\mathrm{K}_{2} \mathrm{CO}_{3}$ and evaporated under reduced pressure on a rotary evaporator.

2-(3-Methoxyphenylthio)benzoic Acid (XIb)

A mixture of 8.24 g thiosalicylic acid, 100 ml dimethylformamide, $14.8 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}, 10.0 \mathrm{~g}$ 3-bromoanisole, and 1 g Cu was stirred and refluxed for 12 h . The mixture was diluted with 500 ml water, the solution was filtered and the filtrate was acidified with hydrochloric acid. The precipitated product was filtered, washed with water and crystallized from $100 \mathrm{ml} 70 \%$ aqueous ethanol; $10 \cdot 8 \mathrm{~g}(78 \%)$ of $X I b$, m.p. $169-170 \cdot 5^{\circ} \mathrm{C}$. Ref. ${ }^{12}$, m.p. $173-174^{\circ} \mathrm{C}$ (different method).

2-(2,4-Dimethoxyphenylthio)benzoic Acid (XId) (Method A)

2,4-Dimethoxythiophenol ${ }^{5,6}(50 \mathrm{~g})$ was added to a stirred solution of 67 g KOH in 570 ml water, the mixture was heated to $55^{\circ} \mathrm{C}$, treated with 72 g 2 -iodobenzoic acid and 1.5 g Cu , and was refluxed for 14 h . The hot solution was filtered with active carbon, the filtrate was cooled and acidified with dilute hydrochloric acid. After standing overnight the precipitated product was filtered, washed with water, suspended in 1 I boiling ethanol, after cooling filtered again, and dried in vacuo; $70.8 \mathrm{~g}(84 \%)$ of XId, m.p. $211-214^{\circ} \mathrm{C}$. Analytical sample, m.p. $215-217^{\circ} \mathrm{C}$ (ethanol). Analysis and spectra are included in Tables I and II.

2-(3-Methoxyphenylthio) benzaldehyde (XIIb)

A mixture of 20.0 g 3-methoxythiophenol ${ }^{3}$, 40 ml dimethylformamide, $20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$, and $20 \cdot 1 \mathrm{~g}$ 2-chlorobenzaldehyde was stirred and heated for 5 h to $90^{\circ} \mathrm{C}$. It was poured to 200 ml water and the product was extracted with benzene. Processing of the extract and crystallization of the crude product from 25 ml methanol gave $28.5 \mathrm{~g}\left(82 \%\right.$) of $X I I b$, m.p. $63 \cdot 5-64 \cdot 5^{\circ} \mathrm{C}$. IR spectrum (Shimadzu IR-4351) (KBr): 689, 755, 842 (4 and 3 adjacent and solitary Ar-H); 1231,1248 , $1282\left(\mathrm{ArOCH}_{3}\right) ; 1574,1588(\mathrm{Ar}) ; 1692,2729(\mathrm{HC=O}) ; 2826\left(\mathrm{OCH}_{3}\right) .{ }^{1} \mathrm{H}$ NMR spectrum: $3.75 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.88 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}^{\prime} 2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.25 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right) ; 7.80 \mathrm{~m}$, $1 \mathrm{H}(\mathrm{H}-6) ; 10.32 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR spectrum: $56.67\left(\mathrm{OCH}_{3}\right) ; 113.53\left(\mathrm{C}-2^{\prime}\right) ; 117.34$ (C-4'); 124.29 (C-6'); 125.93, 129.82, 130.64, $131 \cdot 04$ (C-3, C-4, C-5, C-6); $130 \cdot 19$ (C-5'); 133.48, $134.00\left(\mathrm{C}-2\right.$ and $\left.\mathrm{C}-1^{\prime}\right) ; 140.42(\mathrm{C}-1) ; 159.77\left(\mathrm{C}-3^{\prime}\right) ; 190.84(\mathrm{CHO})$. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~S}(244 \cdot 3)$ calculated: $68.83 \% \mathrm{C}, 4.95 \% \mathrm{H}, 13 \cdot 12 \% \mathrm{~S}$; found: $68.59 \% \mathrm{C}, 4.97 \% \mathrm{H}, 12.95 \% \mathrm{~S}$.

2-(2,4-Dimethoxyphenylthio)benzaldehyde (XIId)

Similar reaction of $30.0 \mathrm{~g} 2,4$-dimethoxythiophenol ${ }^{5,6}, 24 \cdot 3 \mathrm{~g} 2$-chlorobenzaldehyde, and $18 \cdot 7 \mathrm{~g}$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 55 ml dimethylformamide (3.5 h at $100^{\circ} \mathrm{C}$ under nitrogen) gave $42 \mathrm{~g}(89 \%$) of crude

XIId, m.p. $115^{\circ} \mathrm{C}$. Analytical sample, m.p. $129-130^{\circ} \mathrm{C}$ (ethanol). UV spectrum: 233 (4.43), infl. 265 ($4 \cdot 01$), infl. 285 ($3 \cdot 79$), 340 (3.54). IR spectrum: 760, 824, 842, 864 (4 and 2 adjacent and solitary Ar-H); $1022,1076,1280,1300\left(\right.$ ArOCH$\left._{3}\right) ; 1480,1570,1585,1600,3010,3075$ (Ar); $1673,1690,2750,2810(\mathrm{HC}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum: 3.72 s and $3 \cdot 80 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right)$; $6.40-7.50 \mathrm{~m}, 6 \mathrm{H}$ (H-3, H-4, H-5, H-3', H-5', H-6'); $7.80 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) ; 10.38 \mathrm{~s}, 1 \mathrm{H}$ (CHO). For $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}(274 \cdot 3)$ calculated: $65.67 \% \mathrm{C}, 5 \cdot 14 \% \mathrm{H}, 11 \cdot 69 \% \mathrm{~S}$; found: $65.71 \% \mathrm{C}, 5.16 \% \mathrm{H}$, $11.75 \% \mathrm{~S}$.

2-(2,5-Dimethoxyphenylthio)benzaldehyde (XIIe)

Similar reaction of 32.8 g 2,5-dimethoxythiophenol ${ }^{7}, 26.6 \mathrm{~g}$ 2-chlorobenzaldehyde, and 20.5 g $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in 60 ml dimethylformamide (3.5 h at $100^{\circ} \mathrm{C}$ under nitrogen) gave $43.5 \mathrm{~g}(84 \%$) of XIIe, m.p. $92-95^{\circ} \mathrm{C}$. Analytical sample, m.p. $97-98^{\circ} \mathrm{C}$ (ethanol). UV spectrum: infi. 268 (3.81), 305 (3.76), infl. 343 (3.53). IR spectrum: 762, 795, 850, 891 (4 and 2 adjacent and solitary Ar-H); $1010,1040,1242,1296\left(\mathrm{ArOCH}_{3}\right) ; 1490,1556,1580,3000,3060(\mathrm{Ar}) ; 1675,2755(\mathrm{HC}=\mathrm{O})$. ${ }^{1} \mathrm{H}$ NMR spectrum: 3.65 s and $3.71 \mathrm{~s}, 3+3 \mathrm{H}\left(2 \mathrm{OCH}_{3}\right) ; 6.70-7.40 \mathrm{~m}, 6 \mathrm{H}(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5$, H-3', H-4', H-6'); $7 \cdot 80 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6) ; 10 \cdot 35 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO})$. For $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}$ (274.3) calculated: $65.67 \% \mathrm{C}, 5.14 \% \mathrm{H}, 11.69 \% \mathrm{~S}$; found: $65.77 \% \mathrm{C}, 5.23 \% \mathrm{H}, 11.79 \% \mathrm{~S}$.

Semicarbazone, m.p. 205-207 ${ }^{\circ} \mathrm{C}$ (aqueous ethanol). For $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$ (331•4) calculated: $57 \cdot 99 \% \mathrm{C}, 5 \cdot 17 \% \mathrm{H}, 12 \cdot 68 \% \mathrm{~N}, 9.68 \% \mathrm{~S}$; found: $57 \cdot 58 \% \mathrm{C}, 5 \cdot 19 \% \mathrm{H}, 12 \cdot 54 \% \mathrm{~N}, 9 \cdot 49 \% \mathrm{~S}$.

2-(3-Methoxyphenylthio) benzoyl Chloride (XIIIb) (Method B)

A mixture of $30 \mathrm{~g} \mathrm{XIb}$,250 ml benzene and 2 drops of dimethylformamide was stirred and treated with $45 \cdot 1 \mathrm{~g} \mathrm{SOCl}$, added dropwise. The mixture was refluxed for 2 h , volatile components were evaporated in vacuo, the residue was dissolved in 55 ml boiling cyclohexane, the warm solution was filtered, and the filtrate was allowed to crystallize. After 2 h standing in a refrigerator, the product was filtered, washed with cyclohexane, and dried in vacuo; 30.4 g (95%) of XIIIb, m.p. $95-100^{\circ} \mathrm{C}$. Analytical sample, m.p. $101-101 \cdot 5^{\circ} \mathrm{C}$ (cyclohexane). UV spectrum: 224 (4.41), 253 (3.99), 280 (3.79), 320 (3.74). IR spectrum: 692, 725, 780, 790, 850, 860,879 (4 and 3 adjacent and solitary $\mathrm{Ar}-\mathrm{H}) ; 1031,1130,1187,1250\left(\mathrm{ArOCH}_{3}\right) ; 1480,1550,1588,3000,3080(\mathrm{Ar})$; infl. 1725, $1757(\mathrm{ArCOCl}) .{ }^{1} \mathrm{H}$ NMR spectrum: $3.79 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 6.70-7.50 \mathrm{~m}, 7 \mathrm{H}(\mathrm{ArH}$ with the exception of $\mathrm{H}-6) ; 8.21 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$. For $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClO}_{2} \mathrm{~S}(278.7)$ calculated: $60.32 \% \mathrm{C}$, $3.98 \% \mathrm{H}, 12 \cdot 72 \% \mathrm{Cl}, 11 \cdot 50 \%$ S; found: $60 \cdot 38 \% \mathrm{C}, 3.94 \% \mathrm{H}, 13 \cdot 06 \% \mathrm{Cl}, 11 \cdot 38 \% \mathrm{~S}$.

N, N-Dimethyl-2-(3-methoxyphenylthio)benzamide ($X V I b$)

(i) (Method C-1). Chloride $X I I I b(24 \cdot 1 \mathrm{~g})$ in 180 ml benzene was added dropwise at $10^{\circ} \mathrm{C}$ to 160 ml of stirred 20% aqueous dimethylamine. The mixture was stirred at room temperature for 2 h , the layers were separated, the benzene layer was washed with water, filtered, and evaporated in vacuo. The oily residue ($23.1 \mathrm{~g}, 93 \%$) crystallized on standing, m.p. $42-43^{\circ} \mathrm{C}$. The analysis and spectra are included in Tables I and II.
(ii) A solution of 37.9 g XIIIb in 300 ml benzene was stirred and saturated at $25^{\circ} \mathrm{C}$ with 24.5 g dimethylamine and was allowed to stand for 48 h at room temperature. It was washed with 250 ml water, $200 \mathrm{ml} 1 \mathrm{~m}-\mathrm{HCl}, 200 \mathrm{ml} 5 \% \mathrm{NaOH}$, and 200 ml water. Processing gave 38.3 g $\left(98 \%\right.$) of oily $X V I b$, which crystallized on standing, m.p. $42-43^{\circ} \mathrm{C}$ (product identical with that obtained under (i)).
(iii) A solution of 226 g dimethylamine hydrochloride in 150 ml water was slowly treated at $4-7^{\circ} \mathrm{C}$ with a solution of 89 g NaOH in 200 ml water (over 45 min under stirring). At the same
temperature, a solution of 83.2 g XIII b in 640 ml toluene was added over 45 min under vigorous stirring. It was stirred for 2 h at room temperature, allowed to stand overnight, the toluene layer was separated, washed with water, and evaporated under reduced pressure. The oily residue $(84.2 \mathrm{~g}, 97 \%)$ crystallized on standing, m.p. $42-43^{\circ} \mathrm{C}$ (product identical with that obtained under (i)).

3-Methoxythioxanthone ($X X X I I$)
A solution of 10.0 g of supposed $X I I I b$ (was stored for some time at room temperature) in 100 ml benzene was tried to react with a solution of 5.5 g diethylamine in 80 ml benzene at room temperature. After standing overnight the mixture was washed with dilute NaOH and water, dried, and evaporated. The semisolid residue crystallized after trituration with 30 ml light petroleum: 8.2 g of $X X X I I$, m.p. $129-131^{\circ} \mathrm{C}$ (ethanol-heptane). Mass spectrum (CI and EI): 242 (M^{+}, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}, 100$), 213 (8), 199 (22), 184 (8), 171 (35). UV spectrum: infl. 232 (4•17), infl. 250 (4.47), infl. $259(4 \cdot 53), 264(4 \cdot 54)$, infl. $280(4 \cdot 28), 308(3 \cdot 83), 365(3 \cdot 75)$. IR spectrum: 739. 823, 870 (4 and 2 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1070, $1272\left(\mathrm{ArOCH}_{3}\right) ; 1483,1545,1597,3000$, 3050 (Ar); 1631 (ArCOAr'). ${ }^{1} \mathrm{H}$ NMR spectrum: $3.92 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 7.02 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-2, \mathrm{H}-4)$; $7.55 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7) ; 8.60 \mathrm{~m}, 2 \mathrm{H}(\mathrm{H}-1, \mathrm{H}-8)$. For $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~S}$ (242.3) calculated: $69 \cdot 40 \% \mathrm{C}, 4 \cdot 16 \% \mathrm{H}, 13 \cdot 23 \% \mathrm{~S}$; found: $69 \cdot 51 \% \mathrm{C}, 4 \cdot 32 \% \mathrm{H}, \mathbf{1 3} \cdot \mathbf{4 0} \% \mathrm{~S}$.

$\mathrm{N}, \mathrm{N}-\mathrm{Di}(2-\mathrm{propyl})-2-(3-\mathrm{methoxyphenylthio})$ benzamide ($X X I X b$) (Method C-2)

A stirred solution of 12.4 g di(2-propyl)amine in 100 ml benzene was treated at $5^{\circ} \mathrm{C}$ with a solution of $17.0 \mathrm{~g} X I I I b$ in 100 ml benzene and the mixture was stirred for 1 h at room temperature. After standing overnight the precipitated di(2-propyl)amine hydrochloride was filtered off, the filtrate was washed with $5 \% \mathrm{NaOH}, 5 \%$ hydrochloric acid, and water, the solution was dried and evaporated. The residue crystallized from a mixture of 10 ml boiling benzene and 50 ml hexane; $16.0 \mathrm{~g}(76 \%)$ of $X I X b$, m.p. $98-100^{\circ} \mathrm{C}$ (benzene-hexane). Analysis and spectra are included in Tables I and II.

N, N-Dimethyl-2-(3-methoxyphenylthio)benzylamine (IIb)

(i) (Method $D-1$). A solution of $22 \cdot 1 \mathrm{~g} X V I b$ in 350 ml ether was added over 40 min to a stirred solution of $8.7 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 150 ml ether. The mixture was refluxed for 6 h and after cooling decomposed by slow addition of 9 ml water, $9 \mathrm{ml} 15 \% \mathrm{NaOH}$, and 27 ml water. After stirring for 20 min the separated solid was filtered off and washed with ether. The filtrate was dried and evaporated. The residue, representing the almost homogeneous base $I I b(19 \cdot 5 \mathrm{~g}, 93 \%$) resisted 10 all attempts at its crystallization. It was transformed to the hydrochloride (m.p. $149-150^{\circ} \mathrm{C}$). The analyses and spectra are included in Tables I and II.
(ii) A solution of $57.5 \mathrm{~g} X V I b$ in 550 ml tetrahydrofuran, which was stirred under nitrogen, was treated with $22.0 \mathrm{~g} \mathrm{NaBH}_{4}$ and then at $20-27^{\circ} \mathrm{C}$ with $69 \mathrm{ml} \mathrm{BF}_{3} . \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, added dropwise. The mixture was stirred for 1 h at room temperature and then refluxed for 3 h (permanently under nitrogen). After cooling it was dilued with 500 ml benzene, decomposed with 250 ml dilute hydrochloric acid (1:1) and made alkaline with $500 \mathrm{ml} 20 \% \mathrm{NaOH}$ (pH 8). The separated aqueous layer was extracted with benzene, the organic layers were combined, and evaporated. The residuc (58.2 g) was extracted with 80 ml boiling ethanol and the undissolved solid (20.8 g) was filtered while hot. A sample (1.0 g) was crystallized from ethanol and identified to be $\mathrm{N}, \mathrm{N}-$ -dimethyl-2-(3-methoxyphenylthio)benzylamine borane ($X X X I I I$), m.p. $71-75^{\circ} \mathrm{C}$ (ethanol).

IR spectrum: 770, 780, 809, $839(\mathrm{Ar}-\mathrm{H}) ; 1031,1250\left(\mathrm{ArOCH}_{3}\right) ; 1170,2270,2360\left(\mathrm{R}_{3} \mathrm{~N}-\mathrm{BH}_{3}\right)$; 1481, $1571,1590,3000,3035$ (Ar). ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz): $2 \cdot 60 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $3.73 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 4.30 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.60-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BNOS}$ (287.2) calculated: $66.91 \% \mathrm{C}, 7.72 \% \mathrm{H}, 4.88 \% \mathrm{~N}$; found: $66.98 \% \mathrm{C}, 7.90 \% \mathrm{H}, 5.03 \% \mathrm{~N}$.

The solid amine borane was combined with the mother liquor, the mixture was diluted with 400 ml ethanol, $100 \mathrm{ml} 20 \% \mathrm{NaOH}$ were added and the mixture was refluxed for 8 h . Ethanol was evaporated in vacuo, the residue was distributed between 500 ml water and 200 ml benzene, the benzene layer was dried, and evaporated. The residue was dissolved in 50 ml ethanol and treatment with a solution of HCl in ether gave $54.0 \mathrm{~g}(87 \%)$ of hydrochloride of $I I b$, m.p. $148-151^{\circ} \mathrm{C}$ (ethanol-ether).
(iii) A solution of 68.7 g XVIb in 470 ml tetrahydrofuran was stirred under nitrogen and treated with 13.1 g NaBH 4 which was followed at $20-27^{\circ} \mathrm{C}$ by $68.7 \mathrm{~g}(61 \mathrm{ml}) \mathrm{BF}_{3} . \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, added dropwise over 1 h . The mixture was stirred for 1 h at room temperature and refluxed for 3 h . After cooling the stirred mixture was treated with 190 ml dilute hydrochloric acid ($1: 1$), added dropwise over 30 min . The mixture was refluxed for 3 h , cooled, and made alkaline with $400 \mathrm{ml} 20 \% \mathrm{NaOH}$. The aqueous layer was diluted with 200 ml water, extracted with 1,2 -dichloroethane, the organic layers were combined, dried, and evaporated. The residue was dissolved in 40 ml ethanol, the solution was treated with a slight excess of ethanolic HCl and 40 ml cyclohexane. The solution was seeded with some crystals of $I I b-\mathrm{HCl}$ and allowed to crystallize overnight in the refrigerator; $58.9 \mathrm{~g}(80 \%)$ of $I I b$ hydrochloride, m.p. $147 \cdot 5-150^{\circ} \mathrm{C}$.
(iv) A mixture of $5.75 \mathrm{~g} X V I b$ and 20 ml POCl 3 was stirred for 3 h at room temperature and was evaporated in vacuo to dryness. The residue was diluted with 20 ml toluene which was also evaporated in vacuo for removing the residue of POCl_{3}. The residue (8.6 g) was dissolved in 15 ml tetrahydrofuran, the solution was cooled to $0^{\circ} \mathrm{C}$ and was treated over 1 h with a suspension of $1.5 \mathrm{~g} \mathrm{NaBH}_{4}$ in 40 ml ethanol. The mixture was stirred for 1 h at room temperature, was treated with 5 ml dilute hydrochloric acid ($1: 1$), and refluxed for 6 h . Ethanol was evaporated in vacuo and the residue was distributed between benzene and dilute $\mathrm{NH}_{4} \mathrm{OH}$. The benzene solution was dried, benzene was evaporated, the residue was dissolved in 7 ml ethanol, and the solution was treated with ethanolic $\mathrm{HCl} ; 1 \cdot 1 \mathrm{~g}(18 \%)$ of $I I b$ hydrochloride, m.p. $148-150.5^{\circ} \mathrm{C}$ (ethanol-ether).

The mother liquor was evaporated in vacuo, the residue was made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$ and was extracted with benezene. Processing of the extract gave 4.07 g of semi-solid substance which was treated with 40 ml ethanol and $8 \mathrm{ml} 20 \% \mathrm{NaOH}$ and the mixture was refluxed for 7 h . Ethanol was evaporated, the residue was distributed between water and benzene, and the benzene extract was processed. The residue (3.9 g) was crystallized from 4 ml ethanol and the crystalline substance (1.3 g) was recrystallized from a mixture of benzene and light petroleum; 0.15 g of 3 -methoxythioxanthone ($X X X I I$), m.p. $127-129.5^{\circ} \mathrm{C}$, identical with the product described above. The mother liquors after the last crystalization were evaporated and the residue was crystallized twice from ethanol giving 0.50 g of a substance melting at $97-98^{\circ} \mathrm{C}$ which appears to be 3 -methoxythioxanthene ($X X X V$). Mass spectrum: $228\left(\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{12} \mathrm{OS}, 75\right), 227$ (100), 213 (9), 212 (8), 197 (24), 184 (29), 152 (12), 139 (7), 114 (8). IR spectrum: 750, 813, 846, 890 (4 and 2 adjacent and solitary Ar-H); 1030, $1050,1242\left(\mathrm{ArOCH}_{3}\right) ; 1490,1560,1583$, $1599,3000,3043,3065$ (Ar). ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz): $3.80 \mathrm{~s}, 5 \mathrm{H}\left(\mathrm{OCH}_{3}\right.$ and $\left.\mathrm{ArCH}_{2} \mathrm{Ar}^{\prime}\right) ; 6.77 \mathrm{dd}, 1 \mathrm{H}(\mathrm{H}-2, J=7.0 ; 2.5) ; 7.00 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-4, J=2.5) ; 7.18 \mathrm{~d}, 1 \mathrm{H}(\mathrm{H}-1$, $J=7.0$); $7 \cdot 10-7.50 \mathrm{~m}, 4 \mathrm{H}$ (remaining ArH). ${ }^{13} \mathrm{C}$ NMR spectrum: $38.17 \mathrm{t}(\mathrm{C}-9) ; 55.42 \mathrm{q}$ $\left(\mathrm{OCH}_{3}\right) ; 111.97 \mathrm{~d}(\mathrm{C}-2) ; 112.79 \mathrm{~d}(\mathrm{C}-4) ; 126.46 \mathrm{~d}, 126.61 \mathrm{~d}, 126.83 \mathrm{~d}(\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7) ; 127.95 \mathrm{~d}$ (C-8); $128.25 \mathrm{~s}(\mathrm{C}-9 \mathrm{a}) ; 128.55 \mathrm{~d}(\mathrm{C}-1) ; 133.71 \mathrm{~s}(\mathrm{C}-10 \mathrm{a}) ; 134.83 \mathrm{~s}(\mathrm{C}-4 \mathrm{a}) ; 136.62 \mathrm{~s}(\mathrm{C}-8 \mathrm{a}), 158.28 \mathrm{~s}$ (C-3). For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{OS}$ (228.3) calculated: $73.65 \% \mathrm{C}, 5 \cdot 30 \% \mathrm{H}, 14.04 \% \mathrm{~S}$; found: $73.66 \% \mathrm{C}$, $5 \cdot 40 \% \mathrm{H}, 13.96 \% \mathrm{~S}$.
(v) A mixture of 28.5 g XIIb, 43 g dimethylformamide and 26.8 g formic acid was stirred and refluxed for 6.5 h (bath temperature $180^{\circ} \mathrm{C}$). After cooling the mixture was treated with 170 ml 5% hydrochloric acid and the solution was washed with ether (these washings were the source of neutral by-products). The acid aqueous solution was made alkaline with $20 \% \mathrm{NaOH}$ an the base was extracted with 1,2 -dichloroethane. Processing of the extract gave $30 \cdot 3 \mathrm{~g}$ of crude $I I b$ which was transformed to hydrochloride $\left(27 \cdot 1 \mathrm{~g}, 75 \%\right.$), m.p. $149-150^{\circ} \mathrm{C}$.

The ethereal washings from several batches were combined and evaporated. The residue (20g) was chromatographed on 200 g silica gel. A mixture of benzene and light petroleum eluted first 4.6 g of a substance melting at $91-96^{\circ} \mathrm{C}$, corresponding by the TLC comparison to $X X X V$ from the preceding experiment. Elution with benzene gave a homogeneous oily fraction $(1.5 \mathrm{~g})$ which was identified by spectra as 2 -(3-methoxyphenylthio) benzyl formate ($X X X V I$). Mass spectrum: $274\left(\mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{~S}\right), 227\left(\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{OS}\right), 213\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{OS}\right), 197\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{~S}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum (100 MHz): $3.72 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 5.34 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{O}\right) ; 6.75-7.50 \mathrm{~m}, 8 \mathrm{H}$ (ArH); $8.10 \mathrm{~s}, 1 \mathrm{H}(\mathrm{CHO}) .{ }^{13} \mathrm{C}$ NMR spectrum: $55.95\left(\mathrm{OCH}_{3}\right) ; 64.61\left(\mathrm{CH}_{2}\right) ; 112.49\left(\mathrm{C}-2^{\prime}\right)$; $115 \cdot 11$ (C-4'); 122.05 (C-6'); 129.07, 129.98, 130.21, 134.08 (C-3, C-4, C-5, C-6); 130.72 (C-5'); $134.08\left(\mathrm{C}-1^{\prime}\right) ; 136.84(\mathrm{C}-2) ; 137.07(\mathrm{C}-1) ; 160.50\left(\mathrm{C}-3^{\prime}\right) ; 161.27\left(\mathrm{CHO}, J_{\mathrm{C}-\mathrm{H}}=225 \mathrm{~Hz}\right)$. The last benzene fraction (0.36 g) was identified again as $X X X 1 I$, m.p. $129 \cdot 5-130 \cdot 5^{\circ} \mathrm{C}$ (ethanol), identical witi: the compound described in the foregoing paragraphs.

X.N-Dimethyl-2-(2,4-dimethoxyphenylthio)benzylamine (IId)

(i) I he compound was prepared from XVId by method $D-1$ in the yield of 80%; the oily base was iransformed to hydrogen maleate (m.p. 117-118 ${ }^{\circ} \mathrm{C}$) and hydrobromide (m.p. 208-209 ${ }^{\circ} \mathrm{C}$). Analyses of the salts and spectra of the base are included in Tables I and II.
(ii) A stirred suspension of 27.6 g XIId in 400 ml ethanol was treated dropwise with a solution of $1.9 \mathrm{~g} \mathrm{NaBH}+4$ in 18 ml water containing $0.2 \mathrm{ml} 20 \% \mathrm{NaOH}$ and the mixture was refluxed 6 h . Fihanol was evaporated and the residue was distributed between water and benzene. The benzene layer washed with $2 \% \mathrm{NaOH}$ and water, dried, filtered with active carbon, and evaporated; $27.2 \&\left(98 \%\right.$) of 2 -(2,4 -dimethoxyphenylthio) benzyl alcohol (m.p. $87-88^{\circ} \mathrm{C}$) which was used withous further characterization.

A boiling solution of 27.0 g of the preceding product in 60 ml benzene was treated under stirring over 30 min with $17.5 \mathrm{~g} \mathrm{SOCl}_{2}$, the mixture was further refluxed for 15 min , and the volatile components were completely removed by evaporation. The crystalline residue was reerystalized from a mixture of 35 ml benzene and 15 ml light petroleum; $18.0 \mathrm{~g}(63 \%)$ of 2-(2,4--dimethoxyphenylthio) benzyl chloride (m.p. $91-93^{\circ} \mathrm{C}$) which also was processed without further characterization.

The preceding chloro compound $(18.0 \mathrm{~g})$ was dissolved in 80 ml chloroform and the solution was saturated at $20^{\circ} \mathrm{C}$ with 11 g gaseous dimethylamine. The mixture was transferred to a 250 ml . autuclave and it was heated for 12 h to $75^{\circ} \mathrm{C}$. After cooling chloroform was evaporated, the residuc was distributed between water and benzene and the benzene layer was washed with $10 \% \mathrm{NaOH}$ and with water. The base was transferred by shaking to $300 \mathrm{ml} 1 \cdot 5 \mathrm{M}-\mathrm{HCl}$, the acid aqueous layer (with crystallizing hydrochloride) was made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$ and the base was extracted with benzene. Processing gave $17.5 \mathrm{~g}(95 \%)$ of the oily IId (hydrogen maleate, m.p. $117-118^{\circ} \mathrm{C}$), a sample of which was transformed to the picrate, m.p. $180-181^{\circ} \mathbf{C}$ (acetone). For $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9} \mathrm{~S}(532 \cdot 5)$ calculated: $51.87 \% \mathrm{C}, 4.54 \% \mathrm{H}, 10 \cdot 52 \% \mathrm{~N}, 6.02 \% \mathrm{~S}$; found: $51.87 \% \mathrm{C}$, $4 \cdot 62 \% \mathrm{H}, \mathbf{1 0} \cdot 42 \% \mathrm{~N}, 6.20 \% \mathrm{~S}$.
N, N-Dimethyl-2-(3,4-dimethoxyphenylthio)benzylamine (IIf) (Method D-2)
A solution of 23.2 g XVIf in 200 ml tetrahydrofuran was added dropwise over 40 min to a stirred solution of 7.2 g LiAlH 4 in 150 ml tetrahydrofuran and the mixture was refluxed for 8 h . After cooling and under external cooling it was decomposed by slow addition of 7 ml water, 7 ml $15 \% \mathrm{NaOH}$, and 21 ml water. After 20 min of stirring the solid was filtered off, washed with tetrahydrofuran, and the filtrate was evaporated; $19.1 \mathrm{~g}(86 \%)$ of oily IIf. Hydrochloride, m.p. $175-176^{\circ} \mathrm{C}$ (ethanol-ether). Analysis of the hydrochloride is included in Table I.

N, N-Diethyl-2-(2-methoxyphenylthio)benzylamine (Va) (Method D-3)

A solution of $14.4 \mathrm{~g} X V I I a$ in a mixture of 50 ml benzene and 100 ml ether was added dropwise to a stirred solution of $6.0 \mathrm{~g} \mathrm{LiAlH}_{4}$ in 50 ml ether and the mixture waz refluxed for 6 h . After standing overnight it was decomposed by addition of $30 \mathrm{ml} 20 \% \mathrm{NaOH}$, the mixture was refluxed for 1 h , cooled and filtered. The filtrate was evaporated in vacuo, the residue was dissolved in 100 ml benzene and the base was transferred by shaking into 100 ml dilute hydrochloric acid ($1: 3$). From the aqueous layer it was released with dilute NaOH and isolated by extraction with benzene; $10.2 \mathrm{~g}(74 \%)$ of oily Va. Hydrochloride, m.p. $182-184^{\circ} \mathrm{C}$ (ethanol-ether). Analysis and spectra of the hydrochloride are included) n Tables I and II.

2-(3-Hydroxyphenylthio)benzoic Acid ($X X X b$)

3-Hydroxythiophenol ${ }^{26}$ (75%, the purity estimated on the basis of content of sulfur) (20.3 g). 39.7 g 2-iodobenzoic acid, and 3.0 g Cu were added to a stirred solution of 25 g KOH in 250 ml water and the mixture was refluxed for 6.5 h . After cooling it was filtered and the filtrate was acidified with hydrochloric acid. After standing overnight, the crude product was filtered. Two crystallizations from aqueous ethanol gave 22.15 g of homogeneous $X X X b$, m.p. $209-211^{\circ} \mathrm{C}$. UV spectrum: 252 (3.90), 282 (3.72), 315 (3.63). IR spectrum: 694, 735, 782, 870 (4 and 3 adjacent and solitary Ar-H); 1209 (ArOH); 1480, 1 559, 1585,3050 (Ar); 1671, 2670 (ArCOOH); $3230,3325(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{MHz}\right): 6.95 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-2^{\prime}, \mathrm{H}-\mathbf{4}^{\prime}\right.$, $\mathrm{H}-6^{\prime}$) ; $7.35 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right) ; 7.95 \mathrm{bd}, 1 \mathrm{H}\left(\mathrm{H}-6, \mathrm{~J}=8.5\right.$). For $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{O}_{3} \mathrm{~S}$ (246.3) calculated: $63 \cdot 40 \% \mathrm{C}, \mathbf{4 \cdot 0 9} \% \mathrm{H}, \mathbf{1 3 \cdot 0 2} \% \mathrm{~S}$; found: $\mathbf{6 2 \cdot} \cdot \mathbf{9} \% \mathrm{C}, 4 \cdot 33 \% \mathrm{H}, 12 \cdot 81 \% \mathrm{~S}$.

N, N-Dimethyl-2-(3-hydroxyphenylthio)benzamide ($X X X I b$)

A mixture of 13.1 g triphenylphosphine, 20 ml tetrachloromethane and 100 ml tetrahydrofuran was stirred for $1 \mathrm{~h}, 12.1 \mathrm{~g} X X X b$ and 7.0 g dimethylamine were added, the mixture was stirred for 4 h , allowed to stand overnight, stirred for 3 h , filtered and the filtrate was evaporated. The inhomogeneous residue was chromatographed on 150 g silica gel using elution with chloroform. The first fractions contained the less polar components (triphenylphosphine, m.p. 78 to $79.5^{\circ} \mathrm{C}$, and triphenylphosphine oxide, m.p. $155-159^{\circ} \mathrm{C}$). The last fractions crystallized from ether; $3.62 \mathrm{~g}(27 \%)$ of homogeneous $X X X I b$, m.p. $124 \cdot 5-125 \cdot 5^{\circ} \mathrm{C}$. UV spectrum: 248 (4.14), 280 (3.77). IR spectrum: $690,699,745,770,864,890$ (4 and 3 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1258 (ArOH); 1 587, 3050 (Ar); $1615\left(\right.$ ArCONR $\left._{2}\right) ; 2575,2660,2700,2780\left(\mathrm{NH}^{+}\right)$; infl. 3200 $(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum (100 MHz): 2.85 s and $\left.3.11 \mathrm{~s}, 3+3 \mathrm{H}\left(\mathrm{N}_{\left(\mathrm{CH}_{3}\right)}\right)_{2}\right) ; 6.70-7.30 \mathrm{~m}$, $8 \mathrm{H}(\mathrm{ArH}) ; 8.36 \mathrm{bs}, 1 \mathrm{H}(\mathrm{OH})$. For $\mathrm{C}_{35} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}(273.4)$ calculated: $65.91 \% \mathrm{C}, 5.53 \% \mathrm{H}$, $5 \cdot 12 \% \mathrm{~N}, 11 \cdot 73 \% \mathrm{~S}$; found: $66 \cdot 21 \% \mathrm{C}, 5 \cdot 60 \% \mathrm{H}, 4 \cdot 88 \% \mathrm{~N}, 11 \cdot 76 \% \mathrm{~S}$.
N, N-Dimethyl-2-(3-hydroxyphenylthio)benzylamine ($X X I b$)
(i) (Method E). A mixture of $7.0 \mathrm{~g} I I b$ and 14.8 g pyridine hydrochloride was stirred and heated for 30 min to $210-220^{\circ} \mathrm{C}$ (bath temperature). After partial cooling the melt was dissolved in 220 ml water and the solution was filtered with active carbon. The filtrate was made alkaline to $\mathrm{pH} 8-8.5$ and the separated oil was extracted with chloroform. Processing of the extract gave $5.6 \mathrm{~g}(84 \%)$ of oily $X X I b$ which was converted to salts: hydrogen maleate, m.p. $123-124^{\circ} \mathrm{C}$ (ethanol-ether); hydrochloride, m.p. $165-166^{\circ} \mathrm{C}$ (ethanol); hydrobromide, m.p. $150-151^{\circ} \mathrm{C}$ (ethanol-ether). The pure hydrogen maleate was decomposed with $\mathrm{NH}_{4} \mathrm{OH}$, the oily base was isolated by decantation and was induced to crystallize by trituration with light petroleum, m.p. $106-107^{\circ} \mathrm{C}$ (cyclohexane). Analyses and spectra of the base and the salts are included in Tables I and II.
(ii) (Method F). A solution of $7.7 \mathrm{~g} I I b$ in 60 ml chloroform was cooled to $10^{\circ} \mathrm{C}$ and was treated under stirring over 15 min with a solution of $14.0 \mathrm{~g} \mathrm{BBr}_{3}$ in 20 ml chloroform. The mixture was stirred for 6 h at room temperature, allowed to stand overnight, and diluted at $10-15^{\circ} \mathrm{C}$ with 65 ml ethanol, added dropwise. The clear solution formed was stirred for 8 h at room temperature and the solvents were evaporated at $50-60^{\circ} \mathrm{C}$ under reduced pressure. The oily residue crystallized on trituration with ether; $7.7 \mathrm{~g}(75 \%)$ of $X X 1 b$ hydrobromide, m.p. $142-145^{\circ} \mathrm{C}$. Single crystallization from ethanol gave the pure substance melting at $150^{\circ} \mathrm{C}$ identical with that obtained under (i).
(iii) A mixture of $214 \mathrm{~g} \mathrm{IIb} . \mathrm{HCl}$ and $850 \mathrm{ml} 47 \%$ hydrobromic acid was stirred and heated for 8 h to $120^{\circ} \mathrm{C}$. After cooling it was poured into 1.85 l water and it was made slightly alkaline by slow addition of $1.2120 \% \mathrm{NaOH}(\mathrm{pH} 9)$. It was extracted with $2.5 \mathrm{I} 1,2$-dichloroethane and processing of the extract gave $170 \mathrm{~g}(95 \%)$ of crystalline $X X I b$, m.p. $107-108^{\circ} \mathrm{C}$ (methanol), identical with the base described under (i).
(iv) A solution of 1.4 g XXXIb in 20 ml tetrahydrofuran was added over 10 min to a solution of 1.0 g LiAlH 4 in 20 ml tetrahydrofuran and the mixture was refluxed for 6 h . After cooling it was decomposed under stirring with 5 ml water, added dropwise. The solid was filtered off, washed with tetrahydrofuran, the filtrate was dried and evaporated; $1.0 \mathrm{~g}(76 \%)$ of oily $X X I b$. It was converted to hydrogen maleate, m.p. $123-127^{\circ} \mathrm{C}$, corresponding to the product described under (i).

1-(2-(3-Methoxyphenylthio)phenyl)ethanol ($X X X V I I$)

Grignard reagent was prepared from 60 g methyl iodide and 10.2 g Mg in 250 ml ether and was treated under stirring with a solution of $67.8 \mathrm{~g} X I I b$ in 250 ml of the mixture of ether and benzene ($1: 1$), added dropwise over 30 min . It was refluxed for 3 h , after cooling it was decomposed with $200 \mathrm{ml} 20 \% \mathrm{NH}_{4} \mathrm{Cl}$, the separated organic layer was dried and evaporated; 73 g (theoretical) of crude $X X X V I I$. A sample for analysis was distilled, b.p. $183^{\circ} \mathrm{C} / 1 \mathrm{kPa} .{ }^{1} \mathrm{H}$ NMR spectrum $(100 \mathrm{MHz}): 1.44 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{C}-\mathrm{CH}_{3}, J=6.0\right) ; 2.2 \mathrm{~d}, 1 \mathrm{H}(\mathrm{OH}, J=4.0) ; 3.72 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right)$; $5.40 \mathrm{~m}, 1 \mathrm{H}(\mathrm{Ar}-\mathrm{CH}-\mathrm{O}) ; 6.75 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right) ; 7.00-7.50 \mathrm{~m}, 5 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5^{\prime}\right.$, H-6'); $7.65 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$. For $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~S} 260.4$) calculated: $69.20 \% \mathrm{C}, 6.29 \% \mathrm{H}, 12.32 \% \mathrm{~S}$, found: $69 \cdot 49 \% \mathrm{C}, 6 \cdot 14 \% \mathrm{H}, 12 \cdot 45 \% \mathrm{~S}$.

1-(2-(3-Methoxyphenylthio)phenyl)ethyl Chloride ($X X X V^{\prime} 1 I I$)

A refluxing mixture of $71 \cdot 2 \mathrm{~g} X X X V I I, 250 \mathrm{ml}$ benzene and 1 drop of dimethylformamide was treated over 30 min with $30 \mathrm{ml} \mathrm{SOCl} \mathrm{S}_{2}$, added dropwise. The mixture was refluxed for 1.5 h and processed by distillation; $70 \mathrm{~g}(92 \%)$ of $X X X V I I I$, b.p. $177-180^{\circ} \mathrm{C} / 0 \cdot 2 \mathrm{kPa} .{ }^{1} \mathrm{H}$ NMR spectrum
$(100 \mathrm{MHz}): 2.78 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{C}-\mathrm{CH}_{3}, J=7.0\right) ; 3.76 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 5.84 \mathrm{q}, 1 \mathrm{H}(\mathrm{Ar}-\mathrm{CH}-\mathrm{Cl}, J=$ $=7.0) ; 6.75 \mathrm{~m}, 2 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}\right) ; 7.10-7.60 \mathrm{~m}, 5 \mathrm{H}\left(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.78 \mathrm{~m}, 1 \mathrm{H}$ (H-6). For $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClOS}(278 \cdot 8$) calculated: $12 \cdot 72 \% \mathrm{Cl}, 11 \cdot 50 \% \mathrm{~S}$; found: $12 \cdot 50 \% \mathrm{Cl}, 11 \cdot 53 \% \mathrm{~S}$.

N, N-Dimethyl-1-(2-(3-methoxyphenylthio)phenyl)ethylamine (VIIIb)
A mixture of $28.7 \mathrm{~g} X X X V I I I, 200 \mathrm{ml}$ dioxane and 29 g liquid dimethylamine was heated in the autoclave for 6 h to $90^{\circ} \mathrm{C}$. After cooling the mixture was evaporated in vacuo, the residue was diluted with water and extracted with benzene. From the benzene extract the base was transferred by shaking into dilute hydrochloric acid. Evaporation of the benzene layer recovered 10.9 g of the starting $X X X V I I I$. The acid aqueous layer was made alkaline with $20 \% \mathrm{NaOH}$, and the base was isolated by extraction with benzene; 18.3 g (theoretical per conversion) of racemic eily VIIIb.

Hydrochloride, m.p. $123-126^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{CINOS}$ (323.9) calculated: $63 \cdot 04 \% \mathrm{C}$, $6.85 \% \mathrm{H}, \quad 10.95 \% \mathrm{Cl}, 4.32 \% \mathrm{~N}, 9.90 \% \mathrm{~S}$; found: $63 \cdot 11 \% \mathrm{C}, 6.69 \% \mathrm{H}, 11.00 \% \mathrm{Cl}, 4 \cdot 15 \% \mathrm{~N}$, $9.91 \% \mathrm{~S}$.

N, N-Dimethyl-1-(2-(3-hydroxyphenylthio)phenyl)ethylamine (XXVIIb)

Racemic oily VIIIb ($19 \cdot 2 \mathrm{~g}$) was stirred and heated for 7 h with $100 \mathrm{ml} 48 \%$ hydrobromic acid to $120-130^{\circ} \mathrm{C}$ (bath temperature). It was diluted with 250 ml water and after standing overnight the crystallized hydrobromide of $X X V I I b$ was filtered, washed with a small quantity of ice-cold water, and dried in vacuo; 22.7 g (95%), m.p. $194-196^{\circ} \mathrm{C}$. Analytical sample, m.p. $195-196^{\circ} \mathrm{C}$ (ethanol-ether). For $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{BrNOS}(354 \cdot 3)$ calculated: $54.24 \% \mathrm{C}, 5.69 \% \mathrm{H}, 22.55 \% \mathrm{Br}, 3.95 \% \mathrm{~N}$, $9.05 \% \mathrm{~S}$; found: $54.38 \% \mathrm{C}, 5 \cdot 60 \% \mathrm{H}, 22 \cdot 54 \% \mathrm{Br}, 3.79 \% \mathrm{~N}, 8.85 \% \mathrm{~S}$.

The base was released with $\mathrm{NH}_{4} \mathrm{OH}$, isolated by extraction with ether and crystallized from methanol, m.p. $107-108 \cdot 5^{\circ}$ C. UV spectrum: 204 (4.47), infl. 211 (4.45), 246 (3.98), 280 (3.72), infl. 292 (3.63). IR spectrum: $690,759,775,895$ (4 and 3 adjacent and solitary Ar-H); 1263 (ArOH) ; 1490, 1 582, 1 595, $2995,3045(\mathrm{Ar}) ; 2570,2660\left(\mathrm{NH}^{+}\right) ; 2780\left(\mathrm{~N}-\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum (100 MHz): $1.25 \mathrm{~d}, 3 \mathrm{H}\left(\mathrm{C}-\mathrm{CH}_{3}, J=6.0\right) ; 2.15 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 4.06 \mathrm{q}, 1 \mathrm{H}$ (Ar-$-\mathrm{CH}-\mathrm{N}, J=6.0) ; 6.50-7.60 \mathrm{~m}, 9 \mathrm{H}(\mathrm{ArH}$ and OH$)$. For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOS}$ (273.4) calculated: $70 \cdot 29 \% \mathrm{C}, 7.01 \% \mathrm{H}, 5.12 \% \mathrm{~N}, 11.73 \% \mathrm{~S}$; found: $70.41 \% \mathrm{C}, 7.07 \% \mathrm{H}, 5 \cdot 08 \% \mathrm{~N}, 12 \cdot 11 \% \mathrm{~S}$.
(-)-XXVIIb: Neutralization of 20 g racemic VIIIb with $27 \cdot 6 \mathrm{~g}(-)-\mathrm{O}, \mathrm{O}^{\prime}$-dibenzoyl-L-tartaric acid in 100 ml ethyl acetate gave 39.5 g diastereoisomeric mixture of hydrogen (-)-O, O^{\prime}-diben-zoyl-L-tartrates which was crystallized three times from a mixture of ethyl acetate and acetone to give 10.0 g of one homogeneous diastereoisomer, m.p. $123-126^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-38.84^{\circ},[\alpha]_{365}^{20}$ $-211 \cdot 72^{\circ}\left(c=1\right.$, ethanol). For $\mathrm{C}_{35} \mathrm{H}_{35} \mathrm{NO}_{9} \mathrm{~S}(645 \cdot 7)$ calculated: $65 \cdot 10 \% \mathrm{C}, 5 \cdot 46 \% \mathrm{H}, 2 \cdot 17 \% \mathrm{~N}$, 4.97% S; found: $65.34 \% \mathrm{C}, 5.41 \% \mathrm{H}, 2.08 \% \mathrm{~N}, 5.01 \% \mathrm{~S}$. This salt was decomposed with $\mathrm{NH}_{4} \mathrm{OH}$ and the released base (3.5 g , isolated by extraction with ether) was heated with $25 \mathrm{ml} 48 \% \mathrm{HBr}$ for 8 h to $120^{\circ} \mathrm{C}$. After cooling it was diluted with water and the little soluble hydrobromide of (-)-XXVIIb was filtered; $2 \cdot 9 \mathrm{~g}$, m.p. $213 \cdot 5-214 \cdot 5^{\circ} \mathrm{C}$ (ethanol), $[\alpha]_{\mathrm{D}}^{20}+40 \cdot 94^{\circ},[\alpha]_{365}^{20}+194 \cdot 42^{\circ}$ (c 1, ethanol). For $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Br} \mathrm{NOS}(354.3$) calculated: $54.24 \% \mathrm{C}, 5.69 \% \mathrm{H}, 22.55 \% \mathrm{Br}, 3.95 \% \mathrm{~N}$, $9.05 \% \mathrm{~S}$; found: $54.33 \% \mathrm{C}, 5.84 \% \mathrm{H}, 22.35 \% \mathrm{Br}, 3.88 \% \mathrm{~N}, 9.08 \% \mathrm{~S}$. The released (-)-base was crystallized from methanol, m.p. $97 \cdot 5-99^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}-42 \cdot 6^{\circ},[\alpha]_{365}^{20}-165 \cdot 5^{\circ}$ (c 1, ethanol). For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOS}(273 \cdot 4)$ calculated: $70.29 \% \mathrm{C}, 7.01 \% \mathrm{H}, 5 \cdot 12 \% \mathrm{~N}, 11.73 \% \mathrm{~S}$; found: $70.29 \% \mathrm{C}$, $7.18 \% \mathrm{H}, 5.00 \% \mathrm{~N}, 11.78 \% \mathrm{~S}$.
$(+)-X X V I I b:$ Mother liquors from the preceding resolution were combined and the released base (16 g) was neutralized with $22 \mathrm{~g}(+)-\mathrm{O}, \mathrm{O}^{\prime}$-dibenzoyl-D-tartaric acid in 200 ml of a mixture
of acetone and ethyl acetate ($1: 1$) and the diastereoisomeric mixture obtained was crystallized three times from the same mixture of solvents; 13.8 g of the homogeneous diastereoisomer, m.p. $125.5-127.5^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{20}+36 \cdot 25^{\circ},[\alpha]_{365}^{20}+200 \cdot 3^{\circ}(c 1$, ethanol). This salt was decomposed with $\mathrm{NH}_{4} \mathrm{OH}$ and the base (5.9 g) was extracted with ether. After evaporation of the solvent it was heated for 8 h with $50 \mathrm{ml} 48 \% \mathrm{HBr}$ to $120^{\circ} \mathrm{C}$. After cooling it was diluted with water and 7.0 g of hydrobromide of $(+)-X X V I I b$ crystallized, m.p. $213.5-214.5^{\circ} \mathrm{C}$ (ethanol), $[x]_{\mathrm{D}}^{20}-41 \cdot 33^{\circ}$, $[\alpha]_{365}^{20}-192 \cdot 25^{\circ}\left(c 1\right.$, ethanol). For $\mathrm{C}_{16} \mathrm{H}_{20} \operatorname{BrNOS}(354 \cdot 3$) calculated: $54 \cdot 24 \% \mathrm{C}, 5 \cdot 64 \% \mathrm{H}$, $22.55 \% \mathrm{Br}, 3.95 \% \mathrm{~N}$; found: $54.08 \% \mathrm{C}, 5.88 \% \mathrm{H}, 22.33 \% \mathrm{Br}, 3.73 \% \mathrm{~N}$. The released (+)-XXVIIb crystallized from methanol and melted at $98.5-99.5^{\circ} \mathrm{C},[x]_{\mathrm{D}}^{20}+45 \cdot 36^{\circ},[\alpha]_{365}^{20}+174.97^{\circ}$ (c 1 , ethanol). For $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NOS}(273.4)$ calculated: $70.29 \% \mathrm{C}, 7.01 \% \mathrm{H}, 5.12 \% \mathrm{~N}, 11.73 \% \mathrm{~S}$; found: $70 \cdot 29 \% \mathrm{C}, 7 \cdot 17 \% \mathrm{H}, 5 \cdot 05 \% \mathrm{~N}, 11 \cdot 82 \% \mathrm{~S}$.

N -(2-Dimethylaminoethyl)-2-(3-methoxyphenylthio)benzylamine (IXb)

A solution of 12.0 g 2 -dimethylaminoethylamine in 50 ml benzene was stirred and treated under external cooling ($10-20^{\circ} \mathrm{C}$) over 10 min with a solution of $15.0 \mathrm{~g} X I I I b$ in 150 ml benzene and the mixture was stirred for 4 h at room temperature. After standing overnight it was washed with water, dried, and benzene was evaporated; 17.8 g (theoretical) of the crude oily N -(2-dimethyl-amineethyl)-2-(3-methoxyphenylthio)benzamide ($X X b$), which was further used without characterization.

The whole quantity of the crude $X X b$ was dissolved in 100 ml tetrahydrofuran, the solution was treated with $4.3 \mathrm{~g} \mathrm{NaBH}_{4}$ and the stirred mixture was treated under nitrogen with 15 g $\mathrm{BF}_{3} . \mathrm{O}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$, added dropwise. The mixture was stirred for 1 h at room temperature and was refluxed for 3 h . After cooling, 20 ml hydrochloric acid were added and the mixture was refluxed for 3 h . After cooling it was made alkaline with $100 \mathrm{ml} 20 \% \mathrm{NaOH}$ and the base was extracted with ether. Processing of the extract gave 16.5 g of crude oily $I X b$ which was transformed to the dihydrochloride, m.p. $174-177^{\circ} \mathrm{C}$ (ethanol). ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ($\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{MHz}$): $2.86 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.74 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ; 3.00-3.80 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.37 \mathrm{bs}, 2 \mathrm{H}$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.85 \mathrm{~m}, 3 \mathrm{H}\left(\mathrm{H}-2^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-6^{\prime}\right) ; 7.30 \mathrm{t}, 1 \mathrm{H}\left(\mathrm{H}-5^{\prime}\right) ; 7.62 \mathrm{~m}, 3 \mathrm{H}(\mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5)$; $7.92 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-6)$. For $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}(389.4)$ calculated: $55.52 \% \mathrm{C}, 6.73 \% \mathrm{H}, 18.21 \% \mathrm{Cl}$, $7.19 \% \mathrm{~N}, 8.23 \% \mathrm{~S}$; found: $55.48 \% \mathrm{C}, 6.88 \% \mathrm{H}, 18 \cdot 12 \% \mathrm{Cl}, 6.90 \% \mathrm{~N}, 8.21 \% \mathrm{~S}$.

N -Methyl- N -(2-dimethylaminoethyl)-2-(3-methoxyphenylthio)benzylamine (Xb)

A mixture of $15.0 \mathrm{~g} I X b, 12 \mathrm{ml}$ formic acid, and $18 \mathrm{ml} 36 \%$ aqueous formaldehyde was stirred and heated to $100^{\circ} \mathrm{C}$ for 3 h . After cooling it was acidified with 10 ml hydrochloric acid, washed with ether, the aqueous layer was made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with ether. Processing of the extract gave 9.0 g of crude oily $X b$ which was transformed to dihydrochloride, m.p. 168 to $175^{\circ} \mathrm{C}$ (ethanol-ether). Mass spectrum: $330\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}\right), 272,229,214$, 197. IR spectrum: $690,755,789,865$ (4 and 3 adjacent and solitary $\mathrm{Ar}-\mathrm{H}$); 1031, $1250\left(\mathrm{ArOCH}_{3}\right)$; $1480,1590,3010,3045,3070$ (Ar); 2445, $2500,2560\left(\mathrm{NH}^{+}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{MHz}\right): 2.7 \mathrm{Cs}, 3 \mathrm{H}\left(\mathrm{N}-\mathrm{CH}_{3}\right) ; 2.86 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.70 \mathrm{~s}, 3 \mathrm{H}\left(\mathrm{OCH}_{3}\right) ;$ $3.75 \mathrm{~s} .4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.60 \mathrm{bs}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.90-8.10 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{Cl}_{2}$. . $\mathrm{N}_{2} \mathrm{OS}(403.4)$ calculated: $56.57 \% \mathrm{C}, 7.00 \% \mathrm{H}, 17.58 \% \mathrm{Cl}, 6.94 \% \mathrm{~N}, 7.95 \% \mathrm{~S}$; found: $56.20 \% \mathrm{C}$, $7 \cdot 19 \% \mathrm{H}, 17 \cdot 49 \% \mathrm{Cl}, 6 \cdot 76 \% \mathrm{~N}, 8 \cdot 14 \% \mathrm{~S}$.

N -(2-Dimethylaminoethyl)-2-(3-hydroxyphenylthio)benzylamine (XXVIIIb)
A mixture of $2.55 \mathrm{~g} I X b-\mathrm{HCl}$ and $20 \mathrm{ml} 48 \% \mathrm{HBr}$ was stirred for 6.5 h at $120^{\circ} \mathrm{C}$. After cooling it was diluted with water, made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with chloroform. Pro-
cessing of the extract gave 2.35 g of crude oily $X X V I I I b$ which was transformed to bis(hydrogen maleate) (3.5 g , theoretical), m.p. $152 \cdot 5-153 \cdot 5^{\circ} \mathrm{C}$ (ethanol). ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CD}_{3} \mathrm{SOCD}_{3}\right.$, $100 \mathrm{MHz}): 2.78 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.18 \mathrm{~m}, 4 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.17 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.14 \mathrm{~s}$, $4 \mathrm{H}\left(2 \mathrm{CH}=\mathrm{CH}\right.$ of maleic acid); $6.60-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}(534 \cdot 6)$ calculated: $56.17 \% \mathrm{C}, 5.66 \% \mathrm{H}, 5 \cdot 24 \% \mathrm{~N}, 6.00 \% \mathrm{~S}$; found: $55.69 \% \mathrm{C}, 5 \cdot 75 \% \mathrm{H}, 5 \cdot 13 \% \mathrm{~N}, 6.23 \% \mathrm{~S}$.

N -Methyl- N -(2-dimethylaminoethyl)-2-(3-hydroxyphenylthio)benzylamine ($X X I X b$)
A mixture of $3.85 \mathrm{~g} \mathrm{Xb}-2 \mathrm{HCl}$ and $25 \mathrm{ml} 48 \% \mathrm{HBr}$ was heated for 7 h to $120^{\circ} \mathrm{C}$, cooled, diluted with water, made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with chloroform. Processing of the extract gave 3.4 g of crude oily $X X I X b$ which was transformed to bis(hydrogen maleate) $(5.15 \mathrm{~g}, 98 \%$), m.p. $148-151 \cdot 5^{\circ} \mathrm{C}$ (ethanol). Mass spectrum: $316\left(\mathrm{M}^{+}, \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{OS}, 0 \cdot 1\right.$), 258 (40), 215 (47), 213 (53), 98,58 (100). UV spectrum: 246 (4.07), $280(3 \cdot 79)$. IR spectrum: $682,753,777,869,889$ (4 and 3 adjacent and solitary $\mathrm{Ar}-\mathrm{H}) ; 1353,1589\left(\mathrm{COO}^{-}\right) ; 1619(\mathrm{C}=\mathrm{C}) ; 1709(\mathrm{COOH}) ;$ $2400\left(\mathrm{NH}^{+}\right) ; 3160,3320(\mathrm{OH}) .{ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum ($\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{MHz}\right): 2 \cdot 18 \mathrm{~s}, 3 \mathrm{H}$ $\left(\mathrm{N}-\mathrm{CH}_{3}\right) ; 2.78 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 2.76 \mathrm{bm}$ and $3.14 \mathrm{btm}, 2+2 \mathrm{H}\left(\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right) ; 4.70 \mathrm{~s}, 2 \mathrm{H}$ $\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 6.12 \mathrm{~s}, 4 \mathrm{H}\left(2 \mathrm{CH}=\mathrm{CH}\right.$ of maleic acid); $6 \cdot 60-7 \cdot 30 \mathrm{~m}, 8 \mathrm{H}(\mathrm{ArH})$. For $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{9} \mathrm{~S}$ (548.6) calculated: $56.92 \% \mathrm{C}, 5.88 \% \mathrm{H}, 5.11 \% \mathrm{~N}, 5.84 \% \mathrm{~S}$; found: $56.70 \% \mathrm{C}, 6.11 \% \mathrm{H}, 5.05 \% \mathrm{~N}$, $5 \cdot 89 \%$ S.
N, N-Dimethyl-2-(3-hydrophenylthio)benzylamine S -Oxide ($X X X I X$)
A solution of $3.75 \mathrm{~g} X X I b$ hydrogen maleate in 30 ml acetic acid was treated with $2 \mathrm{ml} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$. After 12 h standing at room temperature the mixture was diluted with water, made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with ether; $1.87 \mathrm{~g}(68 \%)$ of $X X X I X$, m.p. $140 \cdot 5-142^{\circ} \mathrm{C}$ (methanol), UV spectrum: 281 (3.38). IR spectrum: 690,757, 790, 878 (4 and 3 adjacent and solitary Ar-H); 1020 (Ar-SO-Ar'); 1250 (ArOH); 1486, 1 584, 1 602, 3 020, 3060,3090 (Ar); 2776, 2 820, $2850\left(\mathrm{~N}-\mathrm{CH}_{3}\right) ; 3160,3220(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum (100 MHz): $2.08 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; 3.16 d and $3.75 \mathrm{~d}(\mathrm{ABq}), 1+1 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}, J=13.0\right) ; 6.70-7.60 \mathrm{~m}, 8 \mathrm{H}(\mathrm{OH}$ and ArH with the exception of $\mathrm{H}-3) ; 8.05 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-3)$. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}(275.4)$ calculated: $65.34 \% \mathrm{C}$, $6.22 \% \mathrm{H}, 5 \cdot 09 \% \mathrm{~N}, 11 \cdot 64 \% \mathrm{~S}$; found: $65 \cdot 38 \% \mathrm{C}, 6 \cdot 22 \% \mathrm{H}, 5 \cdot 10 \% \mathrm{~N}, 11 \cdot 80 \% \mathrm{~S}$.

N, N-Dimethyl-2-(3-hydroxyphenylthio)benzylamine S,S-Dioxide ($X L$)

A solution of $3.75 \mathrm{~g} X X I b$ hydrogen maleate in 30 ml acetic acid was treated with $5 \mathrm{ml} 30 \%$ $\mathrm{H}_{2} \mathrm{O}_{2}$ and the mixture was allowed to stand for 3 days at room temperature. It was diluted with water, made alkaline with $\mathrm{NH}_{4} \mathrm{OH}$ and extracted with chloroform. The extract was evaporated, the residue was extracted with ether and the extract was evaporated; $0.74 \mathrm{~g}(25 \%)$ of $X L$, m.p. $128-129 \cdot 5^{\circ} \mathrm{C}$ (ether). UV spectrum: infl, 269 ($3 \cdot 40$), 276 ($3 \cdot 49$), 288 ($3 \cdot 51$). IR spectrum: 690, 716, 762, 791, 830, 869 (4 and 3 adjacent and solitary Ar-H), $1150,1305\left(\mathrm{SO}_{2}\right) ; 1273$ (ArOH); $1572,1590,1602,3000,3025,3060(\mathrm{Ar}) ; 2490,2570,2685\left(\mathrm{NH}^{+}\right) ; 2785\left(\mathrm{~N}-\mathrm{CH}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum: $2.09 \mathrm{~s}, 6 \mathrm{H}\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 3.77 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 7.00 \mathrm{~m}, 1 \mathrm{H}\left(\mathrm{H}-2^{\prime}\right) ; 7 \cdot 10$ to $7.80 \mathrm{~m}, 7 \mathrm{H}\left(\mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}-6^{\prime}, \mathrm{OH}\right) ; 8.12 \mathrm{~m}, 1 \mathrm{H}(\mathrm{H}-3)$. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$ (291.4) calculated: $61.83 \% \mathrm{C}, 5.88 \% \mathrm{H}, 4.81 \% \mathrm{~N}, 11.01 \% \mathrm{~S}$; found: $61.66 \% \mathrm{C}, 5.81 \% \mathrm{H}, 4.61 \% \mathrm{~N}$, 11.07% S.

N, N-Dimethyl-2-(3-hydroxyphenylthio)benzylamine $\mathrm{N}, \mathrm{S}, \mathrm{S}-\mathrm{Trioxide}$ ($X L I$)

A solution of $3.75 \mathrm{~g} X X I$ hydrogen maleate in 30 ml acetic acid was treated with $8 \mathrm{ml} 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ and the mixture was allowed to stand for 7 days at room temperature. It was then diluted with
water, neutralized with $\mathrm{NH}_{4} \mathrm{OH}$ to pH 8 and extracted with chloroform. Processing of the extract gave 2.0 g of glassy substance which crystallized after trituration with ether. It was recrystallized first form benzene-ethanol and then from ethanol-ether yielding $0.70 \mathrm{~g} \mathrm{(} 23 \%$) of $X L I$, m.p. $164 \cdot 5-166 \cdot 5^{\circ} \mathrm{C}$. UV spectrum: infl. $272 \cdot 5$ (3.41), 278 (3.49), 291 (3.49). IR spectrum: 715, 781, 798, 891 ($\mathrm{Ar}-\mathrm{H}) ; 923(\mathrm{~N}-\mathrm{O}) ; 1151,1295\left(\mathrm{SO}_{2}\right) ; 1236(\mathrm{ArOH}) ; 1553,1581,3010$, 3032,3092 (Ar); $2630\left(\mathrm{NH}^{+}\right) .{ }^{1} \mathrm{H}$ NMR spectrum ($\left.\mathrm{CD}_{3} \mathrm{SOCD}_{3}, 100 \mathrm{MHz}\right): 2.42 \mathrm{~s}, 6 \mathrm{H}$ $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 4.92 \mathrm{~s}, 2 \mathrm{H}\left(\mathrm{ArCH}_{2} \mathrm{~N}\right) ; 7.00-7.80 \mathrm{~m}, 7 \mathrm{H}(\mathrm{ArH}$ with the exception of $\mathrm{H}-6) ; 8.10 \mathrm{~m}$, $1 \mathrm{H}(\mathrm{H}-6)$. For $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}(307.4)$ calculated: $58.61 \% \mathrm{C}, 5.57 \% \mathrm{H}, 4.56 \% \mathrm{~N}, 10.43 \% \mathrm{~S}$; found: $58.38 \% \mathrm{C}, 5 \cdot 54 \% \mathrm{H}, 4.48 \% \mathrm{~N}, 10 \cdot 47 \% \mathrm{~S}$.

Repeated extraction of the aqueous solution with chloroform led to 0.44 g of a different substance which was identified as $X L$, m.p. $128-129 \cdot 5^{\circ} \mathrm{C}$.

The authors wish to thank their colleagues at the Research Institute for Pharmacy and Biochemistry for their contributions to the present study: Drs J. Taimr, J. Schlanger, O. Matousová, Mrs A. Hrádková, and Mrs Z. Janová (spectral data); Mr P. Taufman (synthesis of compound XIVd); Mrs J. Komancová, Mrs V. Smidová, Mr M. Cech, Mrs J. Kropácová, and Mrs A. Svatošová (elemental analyses): Mrs H. Bezděková (measurement of the optical rotation); Dr H. Frycová, Mrs E. Šulcová, Mrs L. Horáková, Mrs A. Kargerová, and Miss A. Vykulilová (pharmacology); Dr S. Wildt (pharmacological screening): Mrs S. Schubertová and Mrs J. Ezrová (biochemical pharmacology); Dr V. Hold (microbiological screening). Our special thanks are due to Dr J. Kohoutová (Institute of Organic Chemistry and Biochemistry of the Czechoslovak Academy of Sciences, Prague) for the mass spectrum of compound XXIb.

REFERENCES

1. Jílek J., Urban J., Taufmann P., Holubek J., Dlabač A., Valchář M., Protiva M.: Collect. Czech. Chem. Commun. 54, 1995 (1989).
2. Mauthner F.: Ber. Dtsch. Chem. Ges. 39, 1348 (1906).
3. Mauthner F.: Ber. Dtsch. Chem. Ges. 39, 3596 (1906).
4. Suter C. M., Hansen H. L.: J. Am. Chem. Soc. 54, 4100 (1932).
5. Suter C. M., Hansen H. L.: J. Am. Chem. Soc. 55, 2080 (1933).
6. Jacob P. III, Anderson G. III, Meshul C. K., Shulgin A. T., Castagnoli N. jr: J. Med. Chem. 20, 1235 (1977).
7. Burton H., Hoggarth E.: J. Chem. Soc. 1945, 14; Chem. Abstr. 39, 2740 (1945).
8. Protiva M., Šindelář K., Šedivý Z., Holubek J., Bartošová M.: Collect. Czech. Chem. Commun. 46, 1808 (1981).
9. Jílek J. O., Seidlová V., Svátek E., Protiva M., Pomykácek J., Šedivý Z.: Monatsh. Chem. 96, 182 (1965).
10. S̆indelář K., Holubek J., Svátek E., Ryska M., Dlabǎ A., Protiva M.: Collect. Czech. Chem. Commun. 47, 1367 (1982).
11. Šindelář K., Protiva M.: Czech. 202,241; Chem. Abstr. 98, 143472 (1983).
12. Bártl V., Metyšová J., Metyš J., Němec J., Protiva M.: Collect. Czech. Chem. Commun. 38, 2301 (1973).
13. Pelz K., Jirkovský I., Adlerová E., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 33, 1895 (1968).
14. Roberts K. C., Smiles S.: J. Chem. Soc. 1929, 863.
15. Šindelář K., Kakáx B., Svátek E., Metyšová J., Protiva M.: Collect. Czech. Chem. Commun. 38, 1579 (1973).
16. Sandoz Ltd.: Belg. 617,251; Chem. Abstr. 58, 12518 (1963).
17. Brown H. C., Heim P.: J. Am. Chem. Soc. 86, 3566 (1964).
18. Brown H. C., Subba Rao B. C.: J. Am. Chem. Soc. 8I, 6428 (1959).
19. Šindelář K., Metyšová J., Holubek J., Šedivý Z., Protiva M.: Collect. Czech. Chem. Commun. 42, 1179 (1977).
20. Atta-ur-Rahman, Basha A., Waheed N., Ahmed S.: Tetrahedron Lett. 1976, 219.
21. Fieser M., Fieser L. F. in: Keagents for Organic Synthesis, Vol. 7, p. 330. Wiley-Interscience, New York 1979.
22. Rajšner M., Mikšík F., Protiva M.: Collect. Czech. Chem. Commun. 43, 1276 (1978).
23. Campbell C. V. T., Dick A., Ferguson J., Loudon J. D.: J. Chem. Soc. 1941, 747; Chem. Abstr. 36, 1325 (1942).
24. Moore M. L.: Org. React. 5, 301 (1949).
25. Weilmuenster E. A., Jordan C. N.: J. Am. Chem. Soc. 67, 415 (1945).
26. Watson E. R., Dutt S.: J. Chem. Soc. 121, 2415 (1922).
27. Barstow L. E., Hruby V. J.: J. Org. Chem. 36, 1305 (1971).
28. Wilson J. D., Weingarten H.: Can. J. Chem. 48, 983 (1970).
29. Hyttel J.: Psychopharmacology 51, 225 (1977).

Translated by the author (M.P.).

[^0]: ${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{SOCD}_{3} ;{ }^{\prime \prime}$ film; ${ }^{c}$ in $\mathrm{KBr} ;{ }^{d}$ at $80^{\circ} \mathrm{C} ;{ }^{e} 100 \mathrm{MHz} ;{ }^{f} \mathrm{HM}$ hydrogen maleate; ${ }^{g}$ at $120^{\circ} \mathrm{C}$.

[^1]: ${ }^{a}$ Acute toxicity in mice on oral administration. ${ }^{b}$ Inhibition of binding of $4 \mathrm{~nm}\left[{ }^{3} \mathrm{H}\right]$ imipramine in hypothalamus of the rat brain. ${ }^{c}$ Inhibition of binding of $4 \mathrm{~nm}\left[{ }^{3} \mathrm{H}\right]$ desipramine in hypothalamus of the rat brain. ${ }^{d}$ Inhibition of re-uptake of $10 \mathrm{~nm}\left[{ }^{3} \mathrm{H}\right] 5$-hydroxytryptamine in the rat brain. ${ }^{e}$ Inhibition of re-uptake of $10 \mathrm{~nm}\left[{ }^{3} \mathrm{H}\right]$ noradrenaline in the cortex of rat brain. ${ }^{f}$ Not estimated. ${ }^{g} \mathrm{LD}_{100}$ orally.

